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• Give a textual query, the task is asked to retrieve semantically relevant videos 

from a list of  candidate videos.

• How to represent textual queries matters.

Text-to-Video Retrieval
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Textual Query                                           Videos



• From keyword based queries to more complex natural language sentence 

based queries.

Keyword based queries

Textual Queries in Video Retrieval
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Natural language sentence 

based queries

Two girls are laughing together and then another 

throws her folded laundry around the room

puppy, play
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Related Work
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https://github.com/danieljf24/awesome-video-text-retrieval

https://github.com/danieljf24/awesome-video-text-retrieval


Tree-augmented Query Encoder
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Query 1: a boy band performs and signs 
autographs

signsandbandboya autographsperforms

0.100 0.094

0.115 0.107

0.265

0.318

The tree is learned with the

retrieval model in an end-to-end

manner, without any syntactic

rules and annotations.



Our Method
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Framework
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Tree-augmented Query Encoder

• We utilize Tree-structured LSTM (TreeLSTM) [Kai et al. ACL15] to
recursively compose a latent semantic tree (LST) in a bottom-to-up
fashion to structurally describe textual queries.
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Kai et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. In ACL 2015.



Latent Semantic Tree 

• Select two adjacent child nodes to merge as a parent node

• Candidate parent node with the maximum score is regareder as the final
true parent node

• Recursively repeat until only a single node is left
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Node Representation 

• Given the representations of two adjacent child nodes and We
we use TreeLSTM to compute the parent node representation.
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Parent node 

representation
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Memory-augmented Node Scoring 

• We propose a memory-augmented node scoring and selection to
select two adjacent child nodes to merge as a parent node.
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Structure-aware Query Representation

• We introduce an attention network to investigate the importance of each
constituent and then derive the intention-aware query representation.
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Temporal-Attentive Video Encoder

• We deal with two types of video characteristics: 1) temporal
dependence between consecutive frames along the sequence and
frame-wise temporal interaction over the whole video space.
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Temporal-Attentive Video Encoder

• To further enhance the representation of the video sequence, we
propose to leverage the frame-wise correlation based on the multi-head
self-attention mechanism [Ashish et al. NeuaIPS17].
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Common Space Learning

• Given a textual query representation and a video representation, we
project them into a common space by two linear projection matrices.
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Triplet ranking loss with the hard negative 

mining [Faghri et al. BMVC2018]: 

We just take into consideration the top       negative 

samples (e.g., 5) and average the costs for stable and 

efficient training.

Faghri et al. Improving Visual-Semantic Embeddings with Hard Negatives. In BMVC 2018.



Experiments
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Experiments
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• R1: How does the proposed method perform compared with state-of-

the-art methods? 

• R2: How the effects of  the different components in our method?

• R3: How does the proposed method perform on different types of  

complex queries (e.g., different lengths)?



Performance comparison on MSR-VTT
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• Our proposed TCE model consistently performs the best on three 

different data splits of  MSR-VTT.



Performance comparison on LSMDC
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• Our TCE again performs

the best on LSMDC.

• TCE has the potential of

improving its performance

by leveraging more features



Experiments
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• R1: How does the proposed method perform compared with state-of-

the-art methods? 

• R2: How the effects of  the different components in our method?

• R3: How does the proposed method perform on different types of  

complex queries (e.g., different lengths)?



Ablation Studies on MSR-VTT
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• Removing each component from TCE would result in relative performance 

degeneration, which shows the importance of  each component.

Remove the memory

Remove the LSTM before LST 

Remove attention and use mean pooling



Ablation Studies on MSR-VTT
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Remove the multi-head attention

Remove the GRU before LST 

Remove attention and use mean pooling

• On video encoder, each component is also beneficial.



Experiments
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• R1: How does the proposed method perform compared with state-of-

the-art methods? 

• R2: How the effects of  the different components in our method?

• R3: How does the proposed method perform on different types of  

complex queries (e.g., different lengths)?



Analysis on Different Types of  Queries
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• Our proposed TCE is better to handle the complex queries.

Query length



Qualitative Analysis
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Query 1: a boy band performs and signs 
autographs

signsandbandboya autographsperforms

0.100 0.094

0.115 0.107

0.265

0.318

• Our proposed is able to construct syntactically reasonable tree.



Conclusions

• In this work, we proposed a novel method TCE for complex-query video 

retrieval, which consists of  a tree-based query encoder and a temporal 

attentive video encoder. Extensive experiments on MSR-VTT and 

LSMDC datasets demonstrate its effectiveness.

• In the future, we will explore the proposed approach for other language-

guided video tasks, such as video moment retrieval with natural language. 

• We are also interested in exploring the external knowledge to enhance the 

text representation learning and the tree construction in the future study.

27
E-mail:  xunyang@nus.edu.sg dongjf24@gmail.com


