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Text-to-Video Retrieval

* Give a textual query, the task is asked to retrieve semantically relevant videos

from a list of candidate videos.

* How to represent textual queries matters.

Textual Query Videos
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Textual Queries 1n Video Retrieval

* From keyword based queries to more complex natural language sentence

based queries.

Keyword based queries puppy, play

l

11
Natural language sentence Two girls are laughing together and then another

based queries throws her folded laundry around the room
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Tree-augmented Query Encoder

Query 1: a boy band performs and signs
autographs The tree 1s learned with the

retrieval model in an end-to-end

manner, without any syntactic

rules and annotations.

a || boy || band || performs (| and || signs|| autographs




Our Method



Framework
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Tree-augmented Query Encoder

* We utilize Tree-structured LSTM (TreeLSTM) [Kai et al. ACL15] to
recursively compose a latent semantic tree (LST) in a bottom-to-up
fashion to structurally describe textual queries.
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Kai et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. In ACI. 2015. ¢



Latent Semantic Tree

* Select two adjacent child nodes to merge as a parent node

* Candidate parent node with the maximum score is regareder as the final
true parent node

* Recursively repeat until only a single node is left
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Node Representation

* Given the representations of two adjacent child nodes (h;, ¢;) and (hj41, ¢jt1)
we use TreeLSTM to compute the parent node representation.
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Memory-augmented Node Scoring

* We propose a memory-augmented node scoring and selection to
select two adjacent child nodes to merge as a parent node.

Parent node
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Structure-aware Query Representation

* We introduce an attention network to investigate the importance ot each
constituent and then derive the intention-aware query representation.
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Temporal-Attentive Video Encoder

* We deal with two types of video characteristics: 1) temporal
dependence between consecutive frames along the sequence and
frame-wise temporal interaction over the whole video space.

—> T
—> T
RNN Frame-wise

Frame Embedding Temporal Interaction

CNN
uonuaNY

14



Temporal-Attentive Video Encoder

* To further enhance the representation of the video sequence, we
propose to leverage the frame-wise correlation based on the multi-head

self-attention mechanism [Ashish et al. NeualPS17].
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Ashish et al. Attention is all you need. In NexrIPS, 2017.



Common Space Learning

* Given a textual query representation and a video representation, we
project them into a common space by two linear projection matrices.

Triplet ranking loss with the hard negative

~ mining [Faghri et al. BMVC2018]:
m B
_ _ max (0,5 + s (Q;, Vj) — s (Qi,V}))
q o V |Nh ;};h

o)
(@ )
£ (‘% We just take into consideration the top |n*| negative

samples (e.g., 5) and average the costs for stable and
etficient training,

Faghri et al. Improving Visual-Semantic Embeddings with Hard Negatives. In BMVC 2018.



Experiments



Experiments

* R1: How does the proposed method perform compared with state-of-
the-art methods?

e R2: How the effects of the different components in our method?

* R3: How does the proposed method perform on different types of
complex queries (e.g., different lengths)?



Performance comparison on MSR-VTT

* Our proposed TCE model consistently performs the best on three

different data splits of MSR-VTT.

Data split from [48]

Random 0.1 0.5 1.0 500
C+LSTM+SA+FC7 [39] | 4.2 | 129 | 19.9 55
VSE-LSTM [15] 38 | 127 | 17.1 66
SNUVL [49] 3.5 15.9 23.8 44
Kaufman et al. [14] 4.7 16.6 24.1 41
CT-SAN [50] 44 | 166 | 223 35
JSFusion [48] 102 | 312 | 43.2 13
Miech et al. [28] 121 | 350 | 48.0 12
TCE 16.1 38.0 51.5 10

Method R@1 | R@5 | R@10 | MedR
Data split from [43]

Dong et al. [6] 1.8 7.0 10.9 193
Mithun et al. [29] 5.8 17.6 25.2 61
DualEncoding [7] 7.7 22.0 31.8 32
TCE 7.7 22.5 32.1 30
Data split from [27]

Random 0.3 0.7 1.1 502
CCA [42] 70 | 144 | 187 100
MEE [27] 129 | 364 | 51.8 10.0
MMEN (Caption) [42] | 138 | 36.7 | 50.7 10.3
JPoSE [42] 143 | 381 | 53.0 9
TCE 17.1 39.9 53.7 9




Pertormance comparison on LSMDC

Method R@1 | R@5 | R@10 | MedR
C+LSTM+SA+FC7 [39] 4.3 12.6 18.9 98
VSE-LSTM [15] 31 | 104 | 165 79
SNUVL [49] 3.6 | 147 | 239 50
Kaufman et al. [14] 47 | 159 | 234 64
CT-SAN [50] 51 | 163 | 25.2 46
Miech et al. [26] 7.3 19.2 27.1 52
CCA (FVHGLMM) [16] | 75 | 217 | 31.0 33
JSFusion [48] 91 | 212 | 341 36
Miech et al. . [28] 7.2 18.3 25.0 44
MEE [27] 102 | 250 | 33.1 29
TCE (Visual) 79 | 208 | 27.8 46
TCE (Visual+Mot.) 9.7 23.3 34.8 32
TCE (Visual+Mot.+Aud.) | 10.6 | 25.8 35.1 29

* Our TCE again performs
the best on LSMDC.

* TCE has the potential of
improving its performance

by leveraging more features

SR



Experiments

e R2: How the effects of the different components in our method?



Ablation Studies on MSR-VT'T

* Removing each component from TCE would result in relative performance

degeneration, which shows the importance of each component.
Method R@1 | R@5 | R@10 | MedR
On Query Encoder
WordEmb+AvgP 6.79 | 2098 | 30.68 32
WordEmb+MaxP 5.92 18.90 27.82 40
LSTM 6.91 21.51 31,17 ol
LSTM+AvgP 6.95 21.28 30.68 35
TCE (w/0-Cxt) 698 | 21.46 | 31.49 30 —— Remove the memory
TCE (w/0-LSTM) 709 | 21.86 31.67 31 ——» Remove the LSTM before L.ST
TCE (w/o-TAtt)+AvgP | 6.59 | 20.57 30.48 34 ——>» Remove attention and use mean pooling
TCE 7.16 | 21.96 | 32.04 30




Ablation Studies on MSR-VT'T

* On video encoder, each component is also beneficial.

—» Remove the multi-head attention
—» Remove the GRU before [.ST

—» Remove attention and use mean pooling

Method R@1 | R@5 | R@10 | MedR
On Video Encoder

Frame+AvgP 6.67 20.41 29.89 36
Frame+MaxP 6.20 | 20.24 29.87 35
GRU 6.75 21.03 30.91 31
GRU+AvgP 6.17 19.51 28.71 38
TCE (w/0-Mha) 6.97 21.59 31.19 51 —
TCE (w/o-GRU) 7.08 | 21.96 | 31.86 30 —
TCE (w/o-VAtt)+AvgP | 6.73 21.38 31.74 29 —
TCE 7.16 | 21.96 32.04 30
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Experiments

* R3: How does the proposed method perform on different types of
complex queries (e.g., different lengths)?



Analysis on Different Types of Queries

* Our proposed TCE 1s better to handle the complex queries.
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Qualitative Analysis

* Our proposed 1s able to construct syntactically reasonable tree.

Query 1: a boy band performs and signs

autographs

a || boy || band || performs

and

signs

autographs




Conclusions

* In this work, we proposed a novel method TCE for complex-query video
retrieval, which consists of a tree-based query encoder and a temporal
attentive video encoder. Extensive experiments on MSR-VTT and
LSMDC datasets demonstrate its effectiveness.

* In the future, we will explore the proposed approach for other language-

guided video tasks, such as video moment retrieval with natural language.

* We are also interested in exploring the external knowledge to enhance the

text representation learning and the tree construction in the future study.
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