Dual Encoding for Zero-Example Video Retrieval

Jianfeng Dong, Xirong Li*, Chaoxi Xu, Shouling Ji, Yuan He, Gang Yang, Xun Wang

Zhejiang Gangshang University

Renmin University of China

Zhejiang University

Alibaba Group

Zero-example Video Retrieval (ZEVR)

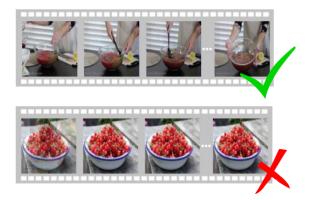
 How to properly associate visual and linguistic information presented in temporal order?

Natural-language query

Someone is making a special fruit punch by adding different types of fruits in a glass bowl

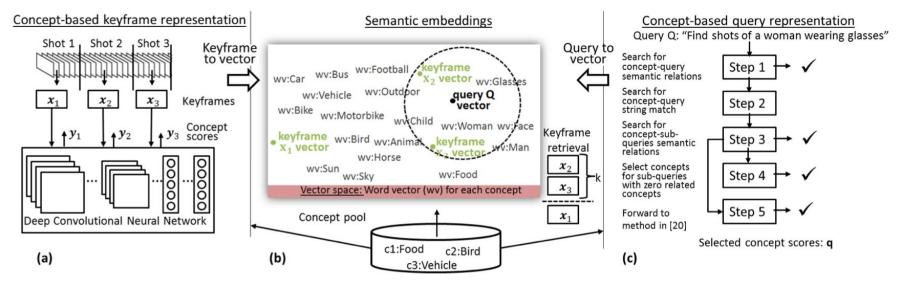
> Many unlabeled videos

Retrieved videos



The State-of-the-art (SOTA)

- Representing both video and text by concept vectors
 - Concept detection, selection and representation^[Markatopoulou et al. ICMR17]



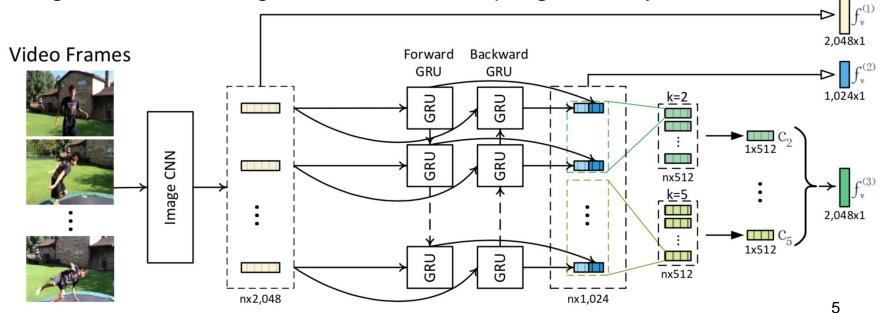
The State-of-the-art (SOTA)

• Few works consider deep learning, but with one encoding strategy

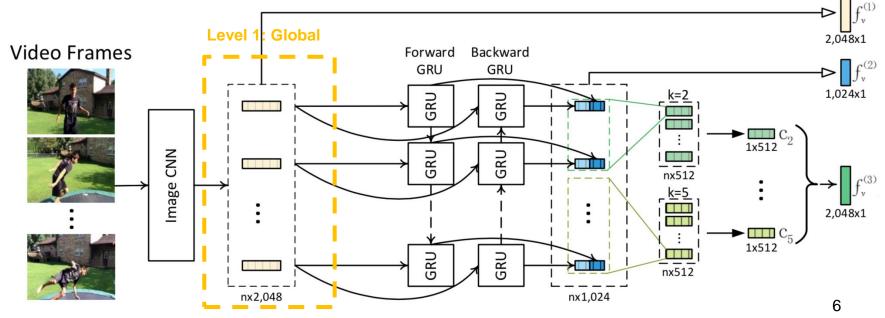
Method	Video-side encoding	Text-side encoding
Xu et al. AAAI15	Mean pooling	Recursive Neural Networks
Habibian <i>et al.</i> T-PAMI17	Mean pooling	Bag-of-Words (BoW)
Yu <i>et al.</i> CVPR17	Long-Short Term Memory (LSTM)	LSTM
Yu <i>et al</i> . ECCV18	CNN	bi-LSTM
Mithun <i>et al</i> . ICMR18	Mean pooling	Gated Recurrent Unit (GRU)
Dong <i>et al.</i> T-MM18	Mean pooling	[BoW; Word2Vec; GRU]

Mean pooling over frame-level CNN features

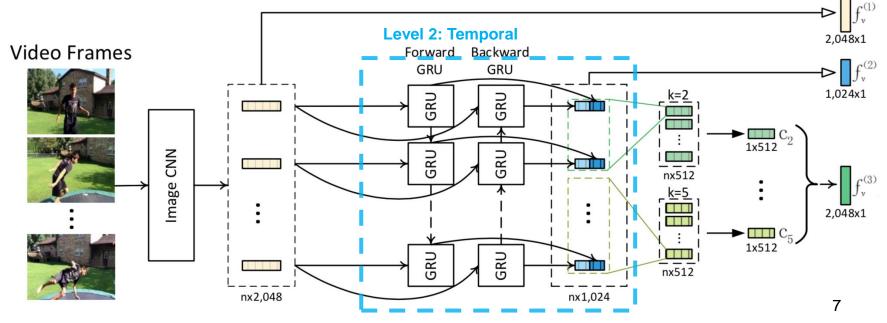
 Given a sequence of frame-level CNN features, we aim to generate new, higher-level features progressively



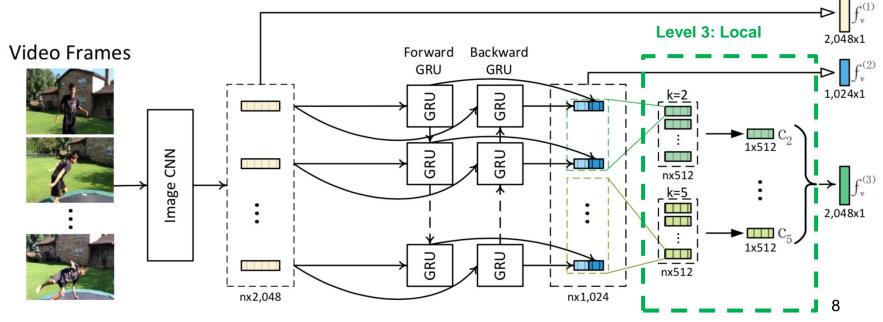
- Level 1: Global encoding by mean pooling
 - To capture visual patterns repeatedly present in the video frames



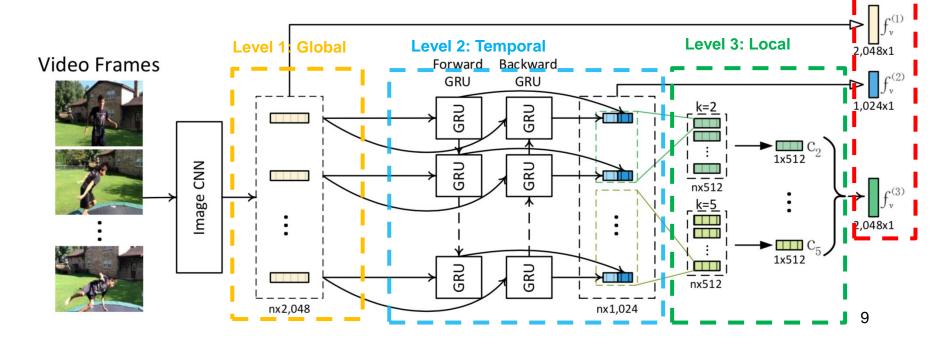
- Level 2: Temporal-aware encoding by biGRU
 - To model the temporal information of the frame sequence



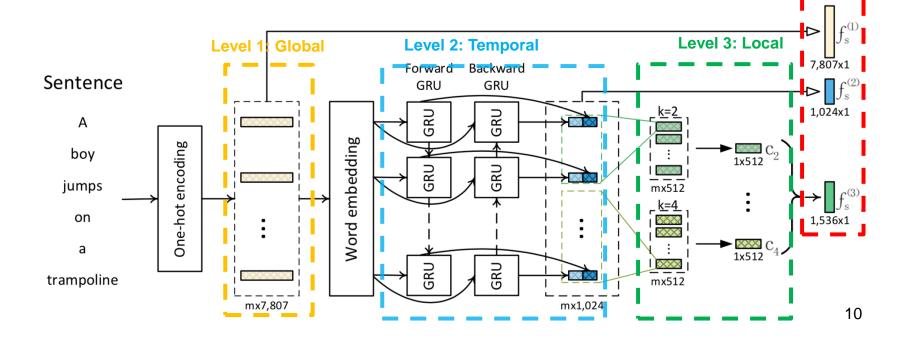
- Level 3: Local-enhanced encoding by biGRU-CNN
 - To enhance local patterns that help discriminate subtle differences



Multi-level encoding by simple concatenation



• The same network design applies on the text side



The Dual Encoding Network

• The network encodes a given video / sentence in parallel



Evaluation

- Questions to answer
 - Is multi-level encoding better than single-level encoding?
 - Is dual encoding better than single-side encoding?

• MSR-VTT^[Xu et al. CVPR16]

	Training	Validation	Test
Videos	6,513	497	2,990
Sentences		On average 20 sen	tences per video

• Baselines

Method	Video-side	Text-side	Loss
Mithun et al. ICMR18	Mean pooling	GRU	Improved Marginal Ranking Loss (imrl)
W2VV (Dong et al. T-MM18)	Mean pooling	[BoW; W2V; GRU]	Mean Square Error
W2VV _{imrl}	Mean pooling	[BoW; W2V; GRU]	imrl

• Dual encoding outperforms the SOTA

Table 1. State-of-the-art on MSR-VTT. Larger $R@\{1,5,10\}$, mAP and smaller Med r indicate better performance. Methods sorted in ascending order in terms of their overall performance. The proposed method performs the best.

Method		Text-to-Video Retrieval					Video-	Sum of Recalls			
	R@1	R@5	R@10	Med r	mAP	R@1	R@5	R@10	Med r	mAP	
W2VV [7]	1.8	7.0	10.9	193	0.052	9.2	25.4	36.0	24	0.050	90.3
Mithun et al. [24]	5.8	17.6	25.2	61	-	10.5	26.7	35.9	25	-	121.7
W2VV _{imrl}	6.1	18.7	27.5	45	0.131	11.8	28.9	39.1	21	0.058	132.1
Dual encoding	7.7	22.0	31.8	32	0.155	13.0	30.8	43.3	15	0.065	148.6

Frame-level CNN features: 2,048-dim ResNet-152

• Ablation study shows that multi-level encoding is the best

Table 2. Ablation study on MSR-VTT. The overall performance, as indicated by Sum of Recalls, goes up as more encoding layers are added. Dual encoding exploiting all the three levels is the best.

Encoding strategy	Text-to-Video Retrieval			Video-to-Text Retrieval				Sum of Recalls			
	R@1	R@5	R@10	Med r	mAP	R@1	R@5	R@10	Med r	mAP	Sum of Recums
Level 1 (Mean pooling)	6.4	18.8	27.3	47	0.132	11.5	27.7	38.2	22	0.054	129.9
Level 2 (biGRU)	6.3	19.4	28.5	38	0.136	10.1	26.8	37.7	20	0.057	128.8
Level 3 (biGRU-CNN)	7.3	21.5	31.2	32	0.150	10.6	27.3	38.5	20	0.061	136.4
Level $1 + 2$	6.9	20.4	29.1	41	0.142	11.6	29.6	40.7	18	0.058	138.3
Level $1 + 3$	7.5	21.6	31.2	33	0.151	11.9	30.5	41.7	16	0.062	144.4
Level $2 + 3$	7.6	22.4	32.2	31	0.155	11.9	30.9	42.7	16	0.066	147.7
Level 1 + 2 + 3	7.7	22.0	31.8	32	0.155	13.0	30.8	43.3	15	0.065	148.6

• Dual encoding is better than single-side encoding

Video-side	Text-side	Sum of Recalls
Mean pooling	Multi-level encoding	137.1
Multi-level encoding	Bag-of-words	143.6
Dual	148.6	

Experiments on TRECVID

- TRECVID Ad-hoc Video Search (AVS) Task, since 2016
 - Given the test collection (IACC.3), and a set of 30 ad-hoc queries released by NIST, return for each query a list of at most 1000 shot IDs from the test collection, ranked according to their likelihood of containing the target query.

IACC.3: 335,944 shots from 4,593 Internet videos, with very diverse content

• Performance metric: Inferred AP (infAP)

Experiments on TRECVID

• Dual encoding outperforms the SOTA

Table	3. State-of-the-art on TRI	ECVID 2016.	Table 4. State-of-the-art on TR	<u>ECVID</u> 2017.	
	Method	infAP	Method	infAP	
	Top-3 TRECVID finalists:		Top-3 TRECVID finalists:		I
	Le <i>et al</i> . [15]	0.054	Snoek <i>et al</i> . [28]	0.206	
Concept-based	Markatopoulou <i>et al.</i> [22]	0.051	Ueki et al. [30]	0.159	
methods, mostly	Liang <i>et at</i> . [16]	0.040	Nguyen et al. [25]	0.120	L
	<i>Literature methods</i> : Habibian <i>et al.</i> [10] Markatopoulou <i>et al.</i> [21]	0.087 0.064	<i>Literature methods</i> : Habibian <i>et al</i> . [10]	0.150	I I
	W2VV _{imrl} Dual encoding	0.132 0.159	W2VV _{imrl} Dual encoding	0.165 0.208	1
	2		0		

TRECVID 2018 Video-to-Text Matching

Query video

Retrieved text

"Two dogs are playing on beach in a cloudy day"

Dual encoding based solutions perform the best.



Experiments on MSVD and MPII-MD

- MSVD[Chen&Dolan ACL11]
 - similar to MSR-VTT but in a smaller scale
- MPII-MD^[Rohrbach et al. CVPR15]
 - A movie description dataset

Table 6. **Performance of zero-example video retrieval, measured by mAP**. Our proposed method is the best.

Model	MSVD	MPII-MD	
W2VV W2VV _{imrl}	0.100 0.230	0.008 0.030	
VSE++	0.218	0.022	Scores appear to be low?
Dual Encoding	0.232	0.037	

Experiments on MSVD and MPII-MD

• Low scores on MPII-MD are largely due to incomplete ground truth

Query sentence: They wrap their arms around each other (AP=0.25)

Ground truth
Top-5 shots retrieved from the MPII-MD test set by our model

Image: Comparison of the state of the

Query sentence: In a restaurant, Someone sits at a table with the guy (AP=0.031) Ground truth Top-5 shots retrieved from the MPII-MD test set by our model

Experiments on Image-Text Retrieval

Replace text encoding of VSE++ by our multi-level encoding

Method	Te	xt-to-In	nage	Image-to-Text				
	R@1	R@5	R@10	R@1	R@5	R@10		
On Flickr30k								
VSE++	23.1	49.2	60.7	31.9	58.4	68.0		
VSE++, multi-level encoding	24.7	52.3	65.1	35.1	62.2	71.3		
On MSCOCO								
VSE++	33.7	68.8	81.0	43.6	74.8	84.6		
VSE++, multi-level encoding	34.8	69.6	82.6	46.7	76.2	85.8		

Multi-level encoding improves VSE++

Image side: VGGNet features from Faghri et al. BMVC18

Take-home Messages

- One *dual* network to encode the video and text modalities
- Multi-level encoding plus common space learning is effective for sequence-to-sequence cross-modal matching
- New SOTA on multiple benchmarks for zero-example video retrieval

https://github.com/danieljf24/dual_encoding

🔀 dongjf24@gmail.com