Word2VisualVec for Video-To-Text Matching and Ranking

Jianfeng Dong¹, Xirong Li², Xiaoxu Wang², Qijie Wei², Weiyu Lan², Cees G. M. Snoek³

> Zhejiang University¹ Renmin University of China² University of Amsterdam³

Our idea

Project sentences into a video feature space

Match sentences and videos in this space

Solution: Word2VisualVec

Transform text into a video feature vector

J. Dong, X. Li, C. Snoek, Word2VisualVec: Cross-Media Retrieval by Visual Feature Prediction, Arxiv:1604.06838, 2016

Word2VisualVec

Transform text into a video feature vector

Word2VisualVec

Transform text into a video feature vector

Minimize Mean Squared Error between text vector and video vector

Implementation

Two video features

- Visual: Mean pooling over frame-level CNN feature extracted by GoogleNet-shuffle^[Mettes et al ICMR16]

- Visual + Audio: GoogleNet-shuffle + Bag of quantized MFCC

Word2Vec

- 500-dim, trained on user tags of 30m Flickr images

Word2VisualVec architecture

- For predicting the visual feature: 500-1000-1024

- For predicting the visual + audio feature: 500-1000-2048

Training set

- MSR-VTT training set of 6,513 videos^[Xu et al. CVPR16]

Validation set

- TRECVID 200 training videos

Video-to-text results

Word2VisualVec is effective

Adding the audio feature provides some improvement

Video-to-text results

Text \rightarrow Visual **a man with a beard is wearing glasses**

Text \rightarrow Visual + Audio man talks into the camera

Text \rightarrow Visual soccer players are blocking the ball on a soccer field Text \rightarrow Visual + Audio a soccer player scores a goal on a soccer field

More results at http://lixirong.net/demo/vtt/tv16.html

Video Description Generation

J. Dong, X. Li, W. Lan, Y. Huo, C. Snoek, **Early embedding and late reranking for video captioning**, ACM Multimedia 2016

Idea: Re-use Video Tags for Captioning

Predicted tags

Generated caption

track race field woman

a group of people are running in a race track

soccer player game playing

a **soccer player** is **playing** a goal on a soccer field

dance people woman dancing

people are dancing on a stage

Our solution

Google's model for sentence generation

Our solution

Better initialization by tag embedding

Our solution

Rerank sentences by matching with video tags

Heuristics to add 'where'

Two simple rules to append 'where' description to the end of the generated sentences:

- 1. Add "on a \$sport_name field" if \$sport appear in the sentence, such as basketball, baseball, and football.
- 2. Add "on a stage" if "sing" or "dance" appear in the sentence.

Description generation results

Adding "where" improve the performance

Live demo

http://lixirong.net/demo/vtt

accept video file less than 10 MB

Conclusion

Word2VisualVec for video-to-text matching in video space

Early embedding and late reranking improves LSTM based video captioning

Winning results in the VTT task

