Feature Re-Learning with Data Augmentation for Content-based Video Recommendation

Jianfeng Dong¹, Xirong Li², Chaoxi Xu², Gang Yang², Xun Wang¹

1. Zhejiang Gongshang University ²AI & Media Computing Lab, Renmin University of China

Grand Challenge Session @ ACM Multimedia 2018

Videos are important

Video-sharing websites are very popular.

On YouTube:

- 300 hours of video are uploaded every minute
- **5 billion** videos are watched per day
- **30 million** user visited YouTube per day
- **2.1 hours** consumed by visitors per day per person

Video recommendation

In a rich context

. . .

- User interaction: browsing, commenting and rating
- Meta-data: title, filename

YOU MAY ALSO LIKE

Cold-start video recommendation

- No contextual information
- Video content only

browsing commenting ating

Hulu task

Content-based Video Relevance Prediction Challenge

Given a video, participants are asked to rank a list of prespecified videos in terms of their relevance.

Task setup

What we have

- Two tracks:
 - Movies Track
 - TV-shows Track
- Video relevance list
- Visual features
 - frame-level feature: Inception-v3
 - video-level feature: C3D

What we do not have

- Videos
- Frames
- Contextual information
 - user interaction
 - meta-data

Impossible to visually examine recommendation results

Limited training data.

	train	validation	test
Movies Track	4500	1188	4500
TV-shows Track	3000	864	3000

Challenge two

Off-the-shelf CNN features are not optimal.

Our solution

Late fusion

Augmentation for frame-level features

Inspired by the fact that humans could grasp the video topic after watching only several sampled video frames in order, we augment data by skip sampling.

Augmentation for video-level features

As adding tiny perturbations to image pixels are imperceptible to humans, we introduce perturbationbased data augmentation.

Feature re-learning

Triplet ranking loss:

 $\mathcal{L}(v,v^+,v^-;W,b) = max(0,\alpha - cs_{\phi}(v,v^+) + cs_{\phi}(v,v^-))$

Augmentation and re-learning

Both data augmentation and feature re-learning is effective.

Feature	Augmentation	Re-Learning	Movies	TV-shows
Inception-v3	×	×	0.099	0.124
	×		0.163	0.199
			0.191	0.244
C3D	×	×	0.112	0.145
	×	\checkmark	0.155	0.185
			0.163	0.196

Triplet ranking loss consistently outperforms the other two loss functions on both two tracks.

Loss	Movies	TV-shows 0.199 0.181 0.194	
Triplet ranking loss	0.163	0.199	
Improved Triplet ranking loss [1]	0.125	0.181	
Contrastive loss [2]	0.160	0.194	

[1] F. Faghri, D. J Fleet, J. R. Kiros, and S. Fidler. 2018. VSE++: improved visual semantic embeddings. In BMVC.
[2] R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality reduction by learning an invariant mapping. In CVPR

Late fusion is employed by averaging the relevance given by multiple models, which further boosts the performance.

Late fusion	Movies	TV-shows
×	0.191	0.244
\checkmark	0.211	0.276

Official evaluation

Our runs are ranked first on Movies Track and second on TV-shows Track.

Take-home messages

Good practices

- data augmentation on features generating more training instances
- feature re-learning with the triplet ranking loss
- late fusion of multiple models

https://github.com/danieljf24/cbvr

Our runs

	Track 1: TV-shows									
		hit	@k			recall@k				
	k=5	k=10	k=20	k=30	k=50	k=100	k=200	k=300		
Hulu	0.249	0.356	0.461	0.525	0.085	0.141	0.219	0.269		
run 1	0.274	0.365	0.488	0.542	0.099	<mark>0.160</mark> († 13.5%)	0.248	0.302		
run 2	0.287	0.381	0.492	0.550	0.104	0.167 († 18.4%)	0.257	0.314		
run 3	0.288	0.391	0.484	0.539	0.099	0.162 († 14.9%)	0.249	0.305		
run 4	0.309	0.411	0.506	0.567	0.109	0.173 († 22.7%)	0.266	0.323		
run 5	0.308	0.408	0.522	0.589	0.112	0.178 († 26.2%)	0.273	0.331		

	Track 2: Movies								
	hit@k				recall@k				
	k=5	k=10	k=20	k=30		k=50	k=100	k=200	k=300
Hulu	0.190	0.242	0.320	0.373		0.081	0.116	0.168	0.206
run 1	0.210	0.272	0.355	0.412		0.092	<mark>0.133</mark> (↑ 14.7%)	0.192	0.237
run 2	0.211	0.278	0.368	0.427		0.095	<mark>0.139</mark> (↑ 19.8%)	0.201	0.248
run 3	0.215	0.278	0.359	0.422		0.096	<mark>0.138</mark> (↑ 19.0%)	0.198	0.244
run 4	0.234	0.298	0.390	0.448		0.104	<mark>0.148</mark> (↑ 27.6%)	0.210	0.258
run 5	0.232	0.302	0.389	0.441		0.105	0.151 (↑ 30.2%)	0.215	0.263