Image Retrieval by Cross-Media Relevance Fusion

Jianfeng Dong¹, Xirong Li², Shuai Liao² Jieping Xu², Duanqing Xu¹, Xiaoyong Du²

> ¹Zhejiang University ²Renmin University of China

Produce a relevance score for a given image-query pair.

Key question: How to compute cross-media relevance?

Cross-media relevance computation

Image and query have to be represented in a common space

Choices of the common space: 1.Bag of words sapce 2.Visual feature space 3.Learned space

Cross-media 1: Image2Text

Compute relevance in a bag of words space.

Cross-media 2: Text2Image

Compute relevance in a visual feature space.

Cross-media 3: Parzen window

Hypothesis: relevant images are visually similar

Cross-media 4: Semantic Embedding

Compute relevance in a learned semantic space.

Cross-media relevance fusion Framework

Fusion for better performance.

Official evaluation

Our runs are ranked at the top.

- Text2Image (Parzen window) is a winning component.

- Relevance fusion gives the best performance.

https://github.com/danieljf24/cmrf