Exploring Content-based Video Relevance for Video Click-Through Rate Prediction

Xun Wang¹, Yali Du², Leimin Zhang¹, Xirong Li³, Miao Zhang⁴, and Jianfeng Dong^{1*}

¹Zhejiang Gangshang University ²University of Technology Sydney ³Renmin University of China ⁴Zhejiang University

Introduction

In the **D U** Challenge, given a list of videos that a user has viewed in history, participants are asked to predict whether the user will click a new candidate video, which is a standard Click-Through Rate (CTR) prediction problem.

Dataset

The HULU challenge has two separated tracks: **TV-series** and **Movies**. Each track provides a dataset, and the dataset is composed of a bunch of viewer records and the corresponding video content.

Existing methods for video CTR problem have some limitations:

- Do not consider the video content (Cold-start problem)
- Lack explicit modeling of item-wise relevance

Our methods

Method 1: Cascading Mapping Network (CMN)

We predict the **click probability score** by measuring the **relevance** between the candidate video and watched videos via CMN.

Method 2: Relevant-Enhanced Deep Interest Network (REDIN)

We improve deep interest network (DIN) by adding explicit video relevance constraint for model training.

