

Introduction

In zero-example video retrieval (ZEVR), an end user searches for unlabeled videos by ad-hoc queries described in natural language text with no visual example provided.

Retrieved videos

Natural-language query

Someone is making a \longrightarrow ZEVR \longrightarrow special fruit punch by adding different types of fruits in a glass bowl Many unlabeled videos

How to properly associate visual and linguistic information presented in temporal order?

State-of-the-Art

Two types of methods

- The majority are concept based
- Representing both video and text by concept vectors
- ✓ Challenges exist in concept detection, selection and representation
- Few works consider deep learning
- ✓ Lack of multi-level encoding
- ✓ Lack of unified encoding

Method	Video-side encoding	Text-side encoding
Xu <i>et al.</i> AAAI15	Mean pooling	Recursive Neural Networks
Habibian <i>et al.</i> T-PAMI17	Mean pooling	Bag-of-Words (BoW)
Yu <i>et al.</i> CVPR17	LSTM	LSTM
Yu <i>et al</i> . ECCV18	CNN	bi-LSTM
Mithun <i>et al</i> . ICMR18	Mean pooling	GRU
Dong <i>et al.</i> T-MM18	Mean pooling	[BoW; Word2Vec; GRU]

Mean pooling over frame-level CNN features

https://github.com/danieljf24/dual_encoding

xirong@ruc.edu.cn dongjf24@gmail.com

Dual Encoding for Zero-Example Video Retrieval

Jianfeng Dong¹, Xirong Li², Chaoxi Xu², Shouling Ji³, Yuan He⁴, Gang Yang², and Xun Wang¹

¹Zhejiang Gangshang University ²Renmin University of China

Level 1 Global : To capture visual patterns repeatedly present in the video frames Level 2 Temporal-aware : To model the temporal information of the frame sequence **Level 3 Local-enhanced** : To enhance local patterns that help discriminate subtle differences

Experiments

• Is multi-level encoding better than single-level encoding?

Encoding strategy	Text-to-Video Retrieval			Video-to-Text Retrieval				Sum of Recalls			
	R@1	R@5	R@10	Med r	mAP	R@ 1	R@5	R@10	Med r	mAP	
Level 1 (Mean pooling)	6.4	18.8	27.3	47	0.132	11.5	27.7	38.2	22	0.054	129.9
Level 2 (biGRU)	6.3	19.4	28.5	38	0.136	10.1	26.8	37.7	20	0.057	128.8
Level 3 (biGRU-CNN)	7.3	21.5	31.2	32	0.150	10.6	27.3	38.5	20	0.061	136.4
Level 1 + 2	6.9	20.4	29.1	41	0.142	11.6	29.6	40.7	18	0.058	138.3
Level 1 + 3	7.5	21.6	31.2	33	0.151	11.9	30.5	41.7	16	0.062	144.4
Level 2 + 3	7.6	22.4	32.2	31	0.155	11.9	30.9	42.7	16	0.066	147.7
Level 1 + 2 + 3	7.7	22.0	31.8	32	0.155	13.0	30.8	43.3	15	0.065	148.6

³Zhejiang University

⁴Alibaba

- Query video

- its text-side counterpart

petter than single-side enco	ding?
Text-side	Sum of Recalls
Multi-level encoding	137.1
Bag-of-words	143.6
Dual encoding	148.6

• Comparison to SOTA on TRECVID'16 / '17 Ad-hoc Video Search

	infAP	Method	infAP		
•		Top-3 TRECVID finalists:		,	
	0 206	Le <i>et al</i> . [15]	0.054		
	0.200	Markatopoulou et al. [22]	0.051		
	0.139	Liang <i>et al</i> . [18]	0.040	Concept-based	
0.120	Literature methods:		methods, mostly		
0.150	Habibian <i>et al</i> . [10]	0.087			
	Markatopoulou et al. [21]	0.064			
	0.165	W2VV _{imrl}	0.132		
	0.208	Dual encoding	0.159		

Comparison to SOTA on TRECVID'18 Video-to-Text Matching

"Two dogs are -----> Retrieved text playing on beach in a cloudy day"

22 runs from all other teams Our runs

Take-home Messages

• One dual network to encode the video and text modalities

• Multi-level encoding plus common space learning is effective for sequence-to-sequence cross-modal matching

• Video-side multi-level encoding is more beneficial when compared with