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ABSTRACT
The rapid growth of user-generated videos on the Internet has
intensified the need for text-based video retrieval systems. Tra-
ditional methods mainly favor the concept-based paradigm on
retrieval with simple queries, which are usually ineffective for
complex queries that carry far more complex semantics. Recently,
embedding-based paradigm has emerged as a popular approach. It
aims to map the queries and videos into a shared embedding space
where semantically-similar texts and videos are much closer to
each other. Despite its simplicity, it forgoes the exploitation of the
syntactic structure of text queries, making it suboptimal to model
the complex queries.

To facilitate video retrieval with complex queries, we propose a
Tree-augmented Cross-modal Encoding method by jointly learning
the linguistic structure of queries and the temporal representation
of videos. Specifically, given a complex user query, we first recur-
sively compose a latent semantic tree to structurally describe the
text query. We then design a tree-augmented query encoder to de-
rive structure-aware query representation and a temporal attentive
video encoder to model the temporal characteristics of videos. Fi-
nally, both the query and videos are mapped into a joint embedding
space for matching and ranking. In this approach, we have a better
understanding andmodeling of the complex queries, thereby achiev-
ing a better video retrieval performance. Extensive experiments
on large scale video retrieval benchmark datasets demonstrate the
effectiveness of our approach.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; Video search.
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Figure 1: Concept-based paradigm vs. Embedding-based par-
adigm for text-based video retrieval.

KEYWORDS
Multimedia retrieval, Video Search, Natural Language Understand-
ing, Latent Tree Structure
ACM Reference Format:
Xun Yang, Jianfeng Dong, Yixin Cao, Xun Wang, Meng Wang, and Tat-
Seng Chua. 2020. Tree-Augmented Cross-Modal Encoding for Complex-
Query Video Retrieval. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’20),
July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3397271.3401151

1 INTRODUCTION
With the exponential growth of user-generated videos on the In-
ternet, searching the videos of interest has been an indispensable
activity in people’s daily lives. Meanwhile, text-based video re-
trieval has attracted world-wide research interests and achieved
promising progress for retrieval with keyword-based simple queries
[37]. However, the expression of text query has been transformed
from the keyword-based mechanism to complex queries in recent
years. A complex query is usually defined as a natural language
query, e.g., “Two girls are laughing together and then another throws
her folded laundry around the room", which carries far more com-
plex semantics than short queries. How to correctly understand
the complex queries has become one of the key challenges in the
multimedia information retrieval community.

Existing efforts on video retrieval with complex queries can be
roughly categorized into two groups: 1) Concept-based paradigm
[18, 24, 25, 31, 41, 52, 53], as shown in Figure 1 (a). It usually uses a
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large set of visual concepts to describe the video content, then trans-
forms the text query into a set of primitive concepts, and finally
performs video retrieval by aggregating the matching results from
different concepts [53]. Despite its efficiency, it is usually ineffec-
tive for complex long queries, since they carry complex linguistic
context and cannot be simply treated as an aggregation of extracted
concepts. Besides, it is also quite challenging to effectively train
concept classifiers and select the relevant concepts. 2) Embedding-
based paradigm [1, 7, 21, 27, 28, 43, 49], as shown in Figure 1 (b).
Recent efforts proposed to learn a joint text-video embedding space
[7, 27, 28, 30] to support video retrieval by leveraging the strong
representation ability of deep neural networks [17, 34]. The natural
language queries are usually transformed into dense vector repre-
sentations by Recurrent Neural Networks (RNNs) [34] (e.g., Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)) that
are powerful for modeling sequence data. The videos are usually
modeled as a temporal aggregation of frame/clip-level features,
extracted from pre-trained Convolutional Neural Networks (CNNs)
[17]. Both the queries and videos are mapped into a shared em-
bedding space where semantically-similar videos and text queries
are mapped to close points. Although the embedding-based meth-
ods have shown much better performance, simply treating queries
holistically as one dense vector representations may obfuscate the
keywords or phrases that have rich temporal and semantic cues.

Some prior works proposed to transform the complex queries
into structured forms, e.g., semantic graph [22], to describe the
spatial or semantic relations between concepts. However, such so-
lutions usually require the text query to be well annotated with
syntactic labels (e.g., part of speech (POS) tag) and rely on complex
predefined rules to construct the structure of text queries, which
make it hard to be applied in a new scenario with different lin-
guistic expression patterns. Although so much efforts have been
devoted to complex-query video retrieval, it still remains to be a
very challenging task.

Towards this research goal, this paper aims to model complex
queries in a more flexible structure to facilitate the joint learning of
the representations of the queries and videos in a unified framework.
Specifically, we develop a Tree-augmented Cross-modal Encod-
ing (TCE) framework for video retrieval with complex queries. As
shown in Figure 2, for the modeling of the complex query, we first
recursively compose a Latent Semantic Tree (LST) to describe the
query (e.g., A baby plays with a fatty cat) without any syntactic an-
notations, where each node (e.g., a baby plays) denotes a constituent
in the complex query. We also propose a memory-augmented node
scoring and selection method to inject linguistic context into the
construction of LST. We then design a tree-augmented query en-
coder that identifies the informative constituent nodes in LST and
aggregates the constituent embeddings into the structure-aware
query representation. For the modeling of the videos, we introduce
a temporal attentive video encoder that first models the temporal
dependence and interaction between frames and then attentively
aggregates the frame embeddings into the temporal-attentive video
representation. Finally, both the user queries and videos are mapped
to a text-video joint embedding space where semantically-similar
videos and text queries are mapped to close points. All the modules
are jointly optimized in an end-to-end fashion using only the paired
query-to-video supervision. We evaluate the proposed approach

on two large-scale text-to-video retrieval datasets, which clearly
demonstrates the effectiveness of each component in our approach.
The contributions of this paper are roughly summarized as follows:

• We develop a novel complex-query video retrieval framework
that can automatically compose a flexible tree structure to model
the complex query and derive the query and video representa-
tions in a joint text-video embedding space.

• We design a memory-augmented node scoring and selection
method to explore linguistic context for the tree construction.
We also introduce the attention mechanism into the encodings of
complex queries and videos, which can identify the informative
constituent nodes and frames.

• We conduct extensive experiments on large-scale datasets to
demonstrate that our approach can achieve state-of-the-art re-
trieval performance.

2 RELATEDWORK
In this section, we briefly introduce two representative research
directions in text-based video retrieval. One is the concept based
methods and the other one is the embedding based methods.

Concept based methods [18, 24, 25, 31, 41] mainly rely on estab-
lishing cross-modal associations via concepts [12]. Markatopoulou
et al. [24, 25] first utilized relatively complex linguistic rules to
extract relevant concepts from a given query and used pre-trained
CNNs to detect the objects and scenes in video frames. Then the
similarity between a given query and a specific video is measured by
concept matching. Ueki et al. [41] depended on a much larger con-
cept vocabulary. In addition to pre-trained CNNs, they additionally
trained SVM-based classifiers to automatically annotate the videos.
Snoek et al. [38] trained a more elegant model, called VideoStory,
from freely available web videos to annotate videos, while they
still represented the textual query by selecting concepts based on
part-of-speech tagging heuristically. Despite the promising per-
formance, the concept based methods still face many challenges,
e.g., how to specify a set of concepts and how to extract relevant
concepts for both textual queries and videos. Moreover, the extrac-
tion of concepts from videos and textual queries are usually treated
independently, which makes it suboptimal to explore the relations
between two modalities. In contrast, our method is concept free
and jointly learns the representation of textual queries and videos.

Deep learning technologies have been popularly explored for
video retrieval recently [7, 20, 21, 27, 28, 30, 43, 45, 49]. Most works
proposed to embed textual queries and videos into a common space,
and their similarity is measured in this space by distance metric,
e.g., cosine distance. For textual query embedding, the word2vec
models pre-trained on large-scale text corpora are increasingly pop-
ular [27, 28, 35, 43]. However, they ignored the sequential order in
textual queries. To alleviate this, Mithun et al. [30] utilized GRU
for modeling the word orders. Further, Dong et al. [21] and Li et
al. [21] jointly employed multiple text embedding strategies in-
cluding bag-of-words, word2vec, and GRU, to obtain robust query
representation. In a follow-up work [7], Dong et al. proposed a
multi-level text encoding to capture the global, local, and temporal
patterns in the textual queries. Despite their effectiveness, these
methods simply treating queries holistically as one dense vector
representations, which may obfuscate the keywords or phrases that
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Figure 2: An illustration of our tree-augmented cross-modal encoding method for complex-query video retrieval.

have rich semantic cues and are less interpretable than the concept-
based paradigm. In this work, we explicitly explore the syntactic
structure of natural language query, thus will help to better under-
stand the search intention. Lin et al. [22] and Xu et al. [45] have
made attempts in this direction. Lin et al. first obtained the parse
tree of the textual query, and modeled the word dependency based
on a series of manually derived rules. In [45], Xu et al. constructed
the dependency-tree structure based on subject-verb-object triplets
extracted from a sentence and modeled the structure by a recursive
neural network.

For video embedding, a typical approach is to first extract the
frame-level features by pre-trained CNNs and subsequently ag-
gregate them into a video representation. To obtain the video-
level feature, mean pooling and max pooling are common choices
[6, 28, 30, 45]. Yu et al. [51] used LSTM to model the temporal infor-
mation, where frame-level features are sequentially fed into LSTM,
and the hidden vector at the last step is used as the video feature.
Dong et al. [7] also explicitly exploited the global and local patterns
in videos to obtain a multi-level video representation. In this work,
we design a temporal attentive video encoder that jointly models
the temporal dependence between consecutive frames by RNNs and
frame-wise temporal interaction by using the multi-head attention
mechanism.

Natural language query-based retrieval techniques have also
been successfully applied for domain-specific object retrieval in the
filed of video surveillance or E-commerce, such as text-based person
search [19] and its application in person re-identification [32, 46, 47]
and dialog-based fashion retrieval [9]. In [19], Li et al. collected
a large-scale person description dataset with detailed natural lan-
guage annotations and person samples from various sources and
proposed a novel recurrent neural network with gated neural atten-
tion for person search. Niu et al. [32] designed a multi-granularity
image-text alignments model for better modeling the similarity
between text description and person images. In [9], Guo et al. intro-
duced the reinforcement learning techniques to the task of dialog-
based interactive image search that enables users to provide feed-
back via natural language.

3 THE PROPOSED APPROACH
This paper proposes to tackle the content-based complex-query
video retrieval task, in which the query is a natural language sen-
tence that describes a video. We basically follow the embedding-
based paradigm that embeds the queries and videos into a joint
embedding space where texts and videos can be easily matched
and ranked. In this section, we first introduce an approach to recur-
sively compose a latent semantic tree to model the complex query
in Section 3.1. Then we introduce how to obtain the vector repre-
sentations of the query and videos in Section 3.2 and 3.3, followed
by the joint optimization of the query and video embeddings in the
same space in Section 3.4.

3.1 LST: Latent Semantic Tree
To better understand the complex query, this work proposes to use
the Tree-structured LSTM (TreeLSTM) [39] to recursively compose
a latent semantic tree (LST) in a bottom-to-up fashion to struc-
turally describe each given query. Following [4], the LST structure
is formulated as a binary recursive tree with two kinds of nodes:
leaf nodes (i.e., words) and parent nodes (i.e., constituents). A parent
node takes in two adjacent child nodes and describes more com-
plex semantics than its child nodes. In this section, we first briefly
describe how to apply TreeLSTM to compute the parent node repre-
sentation from its two child nodes and then describe how to select
the parent node at each layer for recursively building the LST.
TreeLSTM. Given the representations of two adjacent child nodes
(hi , ci ) and (hi+1, ci+1) as inputs, the parent node representation(
hp , cp

)
is computed by

i
fl
fr
o
g


=


σ
σ
σ
σ

tanh


(
Wp

[
hi

hi+1

]
+ bp

)
, (1)

cp = fl ⊙ ci + fr ⊙ ci+1 + i ⊙ g, (2)

hp = o ⊙ tanh(cp ), (3)
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where Wp ∈ R5dt×2dt and bp ∈ R5dt are trainable parameters,
σ (·) denotes the activation function sigmoid, and ⊙ denotes the
element-wise product. Similar to the standard LSTM, each node is
represented by a hidden state h ∈ Rdt and a cell state c ∈ Rdt .
Layer-wise Node Transformation. At the bottom layer, given
a query with N words as inputs, we first represent it as a se-
quence of word embeddings and then transform the word embed-
dings to the representations of leaf nodes at the corresponding
locations. Assume the t-th layer of the LST consists of Nt nodes
{rti = (hti , c

t
i )}

Nt
i=1. If two adjacent nodes rti and rti+1 are selected

to be merged, then we can utilize the above-mentioned TreeL-
STM to compute the representation of the parent node rt+1i =

TreeLSTM(rti , r
t
i+1) at the t + 1 layer. The representations of the

unselected nodes are directly copied to the corresponding positions
at the t + 1 layer.
Memory-augmentedNode Scoring and Selection. The key step
to the building of LST is how to accurately select the parent node
at each layer. Previous work [4] proposed to enumerate all adjacent
two nodes (e.g., rti and rti+1 ) to compose the parent node candidates
{rt+1i }

Nt+1
i=1 and compute their representations by feeding the two

consecutive child nodes into the TreeLSTM, and then select the
best parent node candidate based on a node scoring module. Choi
et al. [4] implemented the scoring module by first introducing a
global query vector and then computing the inner-product between
the query vector and the hidden states of parent node candidates,
followed by a softmax operation. Despite its simplicity, it is still
difficult to effectively decide the best candidate, due to the ambi-
guity of language and the limited capacity of hidden state [5, 48]
to remember the input history, especially when the given query is
very long. To address this issue, we design a memory-augmented
scoring module fscore (·;Θscore ) to select the parent node:

st+1i = fscore
(
rt+1i , u

t+1
i ;Θscore

)
, (4)

where st+1i denotes the probability of the i-th parent node candidate
being selected and ut+1i is a node-specific context vector derived
from a global memory M which stores the semantic context. The
global memory is defined as the set of leaf node hidden state rep-
resentations M = [h11, h

1
2, · · · , h

1
N ] ∈ RN×dt at the bottom layer

which preserves the original semantic context in the given sentence.
To obtain the context vector ut+1i , we use the hidden state ht+1i of
each parent node candidate to query the global memory and then
attentively aggregate the global memory M:

at+1i j = Softmax
(
(ht+1i )Tσ (Wmh1j + bm )/

√
dt
)
, ut+1i = (at+1i )TM,

(5)
where at+1i = [at+1i1 ,a

t+1
i2 , · · · ,a

t+1
iN ] is the normalized attention

vector over the memory and Wm ∈ Rdt×dt and bm ∈ Rdt are
trainable parameters. We then implement our scoring module as:

st+1i = Softmax
(
wT
s σ

(
Ws

[
ht+1i
ut+1i

]
+ bs

)
/
√
2dt

)
, (6)

whereσ (·) is the nonlinear activation functionReLU andws ∈ R2dt ,
bs ∈ R2dt , and Ws ∈ R2dt×2dt are trainable parameters. The main
intuition of this node scoring module is to inject the semantic
context into each decision for a better parent node selection. In

such a recursive process, we select the candidate with the maxi-
mum validity score using Eq. (6) based on the Straight-Through
(ST) Gumberl-Softmax estimator [8]. In the forward pass, the ST
Gumberl-Softmax estimator discretizes the continuous signal, while
in the backward pass, the continuous signals are used for stable
training. Note that only the representation of the selected node is
updated using the outputs of Eq. (1), (2), and (3). The other nodes
that are not selected are not updated.

The above procedure is recursively repeated until only a single
node is left. By this procedure, we can automatically compose a
N -layers binary latent semantic tree with semantically-meaningful
constituents to better understand the complex query without any
syntactic annotations.

3.2 Tree-augmented Query Encoder
One-hot Representation. Given a query Q = {q1,q2, · · · ,qN },
we first represent it as a sequence of one-hot vectors {q′1, q

′
2, · · · , q

′
N },

where q′t indicates the vector of the t-th word. We further convert
the word vectors to word dense representations {q1, q2, · · · , qN }

based on pretrained word embedding matrix [29].
Leaf Node LSTM. We use RNNs as the basic sequence modeling
block. For keeping consistency with the TreeLSTM in our LST
module, we use LSTM to transform the word embeddings to the
leaf node representations at the bottom layer. More formally, the
LSTM unit, at the i-th time step, takes the features of the current
word qi , previous hidden state h1i−1, and cell state c1i−1 as inputs,
and yields the current hidden state h1i and cell state c1i :(

h1i , c
1
i
)
= LSTM

(
qi , h1i−1, c

1
i−1

)
. (7)

Eq. (7) functions as the leaf node transformation module.
Tree Construction. The outputs of Eq. (7) are directly fed into the
TreeLSTMmodule for the transformation of parent node candidates,
as detailed in Eq. (1), (2), and (3). AfterN steps of the transformation,
scoring, and selection, as described in the Section 3.1, we recur-
sively compose a N -layers latent semantic tree, consisting of N -1
constituent nodes (i.e., parent nodes), formulated by

{e1, e2, · · · , eN−1} = LSTree({q1, q2, · · · , qN }), (8)

where LSTree indicates the overall tree construction procedure and
ei ∈ Rdt denotes the representation of the i-th constituent node.
The tree can clearly describe the syntactic structure of complex
queries, which is helpful to better understand the user query. A
similar procedure of tree construction can be found in [4].
Structure-aware Query Representation. The next step is to de-
rive the query representation based on the recursively extracted
constituent nodes in the LST. In previous work [4, 36], only the last
constituent node is used for task-specific inference. However, as
mentioned previously, the complex query usually consists of multi-
ple visual concepts and their reference descriptions, in which some
concepts or reference descriptions may not have clear visual evi-
dence or just have very short temporal durations in the videos. The
last constituent node may not effectively cover the full linguistic
context of the complex queries. In this work, we introduce an at-
tention network to explore the importance of each constituent and
then derive the structure-aware query representation by attending
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to the informative constituent nodes:

βi = Softmax
(
uTtaσ

(
Wtaei + bta

)
/
√
dta

)
, q̄ =

N∑
i=1

βiei , (9)

where σ (·) is the non-linear activation function ReLU and Wta ∈

Rdta×dt , bta ∈ Rdta , and uta ∈ Rdta are trainable parameters,
βi denotes the normalized importance score of the node ei , and
q̄ ∈ Rdt denotes the query representation that aggregates the
representations of all constituent nodes.

3.3 Temporal-Attentive Video Encoder
Given a video clipV , we first sample uniformly a sequence of video
frames {v1,v2, · · · ,vM } from V with a pre-specified interval. We
extract the frame features using pre-trained CNNs and represent
the video clip as V = {vt }Mt=1 where vt ∈ Rd

∗
v denotes the frame

vector of the t-th frame. In this paper, we deal with two types of
video characteristics: 1) temporal dependence between consecutive
frames along the sequence, and 2) frame-wise temporal interaction
over the whole video space.
TemporalDependenceModeling.We leverage theGRU tomodel
the temporal dependence between consecutive frames. At each time
step, GRU takes the feature vector of the current frame and the
hidden state of the previous frame as inputs and yields the hidden
state of the current frame:

h′
t = GRU

(
vt , h′

t−1
)
, (10)

where h′
t ∈ Rdv denotes the hidden state of the t-th frame. By the

operation in Eq. (10), we can effectively capture the dependence
between adjacent frames. For representing a video (clip), previous
works either leverage the last hidden state or aggregate all the
hidden states of frames using average-pooling, forgoing modeling
the frame interaction over the whole video space.
Frame-wise Temporal Interaction Modeling. To further en-
hance of the video sequence representation, we propose to leverage
the frame-wise correlation based on the multi-head self-attention
mechanism [42]. Given a video sequence V = {h′

t }
M
t=1 produced by

the GRU operation in Eq. (10), the basic idea is to first project the
video sequence representation V into multiple embedding spaces
and perform scaled dot-product attention between query frame
and key frame, followed by a softmax operation to obtain the nor-
malized weights on the value frames. We finally concatenate the
outputs from multiple attention spaces as the final value:

V̂i = Softmax
(

1
√
di

(
Wi

QV
)T

Wi
KV

)
Wi

V V, (11)

V̂ = Norm
(
V +Wp

(
Concat

(
V̂1, V̂2, · · · , V̂Z

)))
, (12)

where Wi
Q ∈ Rdi×dv , Wi

K ∈ Rdi×dv , and Wi
V ∈ Rdi×dv are three

trainable parameters that transform the original input V to the
query, key, and value matrices in the i-th attention space with
dimension di . V̂i ∈ Rdi×M denotes the attended value in the i-
th attention space. Concat(·) denotes the concatenation operation.
Wp ∈ Rdv×dv is a trainable parameter that projects the concate-
nated features into original space. Norm(·) denotes the LayerNorm
operation. V̂ = {v̂t ∈ Rdv }Mt=1 is the final video sequence repre-
sentation. The above multi-head attention mechanism allows the

model to jointly attend to information from different representation
spaces at different positions, which effectively captures the feature
interaction among frames.
Temporal-attentive Video Representation. To make informa-
tive frames (e.g., foreground frames) contribute more to the final
video representation, we design a temporal attention neural net-
work with three trainable parameters uva ∈ Rdva , bva ∈ Rdva ,
and Wva ∈ Rdva×dv :

ηt = Softmax
(
uTvaσ

(
Wva v̂t + bva

)
/
√
dva

)
, v̄ =

M∑
t=1

ηt v̂t , (13)

where ηt denotes the normalized importance score of the t-th frame,
and v̄ ∈ Rdv denotes the final video representation. Eq. (13) has a
similar formulation as Eq. (9), both of which are easy to implement
and effective to exploit the informative frame/word features for
representation.

3.4 Text-Video Joint Embedding
Formally, given a natural language query Q = {q1,q2, · · · ,qN } and
a video sequence V = {v1,v2, · · · ,vM }, we transform Q and V

to low-dimensional vector representations q̄ ∈ Rdt and v̄ ∈ Rdv

using the query encoder described in Section 3.2 and the video
encoder in Section 3.3, respectively. Then we map the text query
and video into a joint embedding space by two linear projection
matrices: f t : Rdt → Rd

∗

and f v : Rdv → Rd
∗

, where we define
the cross modal matching score as the cosine similarity:

s (Q,V) =
f t (q̄)T f v (v̄)

∥ f t (q̄)∥2∥ f v (v̄)∥2
, (14)

where f t (q̄) and f v (v̄) are implemented by

f t (q̄) =W∗
t q̄ + b∗t , f v (v̄) =W∗

v v̄ + b∗v , (15)

where W∗
t ∈ Rd

∗×d t , b∗t ∈ Rd
∗

, W∗
v ∈ Rd

∗×dv , and b∗v ∈ Rd
∗

are
trainable parameters. We expect Eq. (14) to yield a higher score
when the video V is matched with the complex query Q or a
lower score if not match. We also apply a batch normalization [13]
followed by a non-linear activation Tanh(·) on f t (q̄) and f v (v̄),
respectively, for stable training. Note that both f t (·) and f v (·) are
not indispensable if we enforce the output of the query encoder
to have the same dimension as the output of video encoder, i.e.,
dt = dv . We introduce f t (·) and f v (·) in Eq. (14) just for more
formal expression and also make the section 3.4 self-contained. Be-
sides, with f t (·) and f v (·), we can derive much lower dimensional
embeddings for fast retrieval without modifying the parameters in
the two encoders.
Loss Function: To train the model, we use the margin ranking
loss to optimize the network with a batch-hard negative sampling
strategy. More formally, during training, we sample a batch of
query-video pair X = {(Qi ,Vi )}

B
i=1. We wish to enforce that, for

any given (Qi ,Vi ), the similarity score s (Qi ,Vi ) between a query
Qi and its ground truth video Vi is larger than the score of any
negative pairs s

(
Qi ,Vj

)
by a large margin, when video Vj does

not match with query Qi . The loss on the batch is defined as

L (X) =
1

|Nh |

B∑
i=1

∑
j ∈Nh

max
(
0, δ + s

(
Qi ,Vj

)
− s (Qi ,Vi )

)
, (16)
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where δ is the margin (δ ∈ (0, 1) ). |Nh | denotes the number of
hard negative videos in the set Nh . We found that the hardest
negative sample may result in unstable training especially in a
large batch, but averaging the costs on all negative samples in
a batch will result in slow training. Therefore, in this work, we
use a trade-off strategy: we just take into consideration the top
|Nh | negative samples (e.g., 5) and average the costs for stable and
efficient training.

4 EXPERIMENT
A key contribution of this work is to develop a new complex-query
video retrieval approach with a tree-augmented cross-modal encod-
ing method. We aim to answer the following research questions via
extensive experiments: (1) R1: How does the proposed method per-
form compared with state-of-the-art methods? (2)R2:What are the
impacts of different components on the overall performance of our
approach? (3) R3: How does the proposed method perform on dif-
ferent types of complex queries (e.g., different lengths and different
categories)? Can the latent semantic tree help to better understand
the complex query and drive stronger query representation?

4.1 Experimental Settings
4.1.1 Datasets. We use two public datasets: MSR-VTT video cap-
tion dataset [44] and LSMDC movie description dataset [33].
MSR-VTT [44]: It is an increasingly popular dataset for text-to-
video retrieval, consisting of 10K YouTube video clips. Each of them
is annotated with 20 crowd-sourced English sentences, which re-
sults in a total of 200K unique video-caption pairs. We notice that
there are three different dataset partitions for this dataset. The first
one is the official partition from [44] with 6,513 clips for training,
497 clips for validation, and the remaining 2,990 clips for testing.
The second one is from [27] with 6,656 clips for training and 1000
test clips for testing. The last one is from [49], 7,010 and 1K video
clips are used for training and testing respectively. Note for the last
two data partitions, only one sentence associated with each video
clip is used as the testing query. For a comprehensive evaluation,
we evaluate our proposed model on all data partitions.
LSMDC [33]: It is another popular dataset that contains 118,081
short video clips extracted from 202 movies. Each video clip has
only one caption, either extracted from the movie script or from the
transcribed audio description. It is originally used for evaluation
in the Large Scale Movie Description Challenge (LSMDC). In this
work, we only consider the text-to-video task in LSMDC: given a
natural language query, the system retrieves the video of interest
from the 1,000 test video set.

4.1.2 Implementation Details. On MSR-VTT, for the word features,
we initialize the word embedding matrix using a 500-D word2vec
model provided by [6] which optimized word2vec on English tags
of 30 million Flickr images. The textual sequence is fed into a uni-
directional LSTM with the hidden size of dt=512 for leaf node
transformation. The hidden sizes of the TreeLSTM and query at-
tention modules are set to dt=512 and dta=256, respectively. The
final query representation has the dimension of dt =512. For the
video features, we use the frame-level visual features provided by
[7], where the 2048-D features are extracted with ResNet-152 [10]
pre-trained on ImageNet. The video frame sequences are fed in a

Table 1: State-of-the-art performance comparison (%) on
MSR-VTT with different dataset splits. Note that TCE uses
bidirectional GRU and LSTM for better performance in this
experiment based on 1024-D query and video embeddings.

Method R@1 R@5 R@10 MedR
Data split from [44]
Dong et al. [6] 1.8 7.0 10.9 193
Mithun et al. [30] 5.8 17.6 25.2 61
DualEncoding [7] 7.7 22.0 31.8 32
TCE 7.7 22.5 32.1 30
Data split from [27]
Random 0.3 0.7 1.1 502
CCA [43] 7.0 14.4 18.7 100
MEE [27] 12.9 36.4 51.8 10.0
MMEN (Caption) [43] 13.8 36.7 50.7 10.3
JPoSE [43] 14.3 38.1 53.0 9
TCE 17.1 39.9 53.7 9
Data split from [49]
Random 0.1 0.5 1.0 500
C+LSTM+SA+FC7 [40] 4.2 12.9 19.9 55
VSE-LSTM [15] 3.8 12.7 17.1 66
SNUVL [50] 3.5 15.9 23.8 44
Kaufman et al. [14] 4.7 16.6 24.1 41
CT-SAN [51] 4.4 16.6 22.3 35
JSFusion [49] 10.2 31.2 43.2 13
Miech et al. [28] 12.1 35.0 48.0 12
TCE 16.1 38.0 51.5 10

unidirectional GRU with the hidden size of dv=512. The output of
GRU is further fed into an 8-head attention module. The dimension
of each head subspace is 64. The temporal attention module with
the hidden size of dva =256 aggregates the outputs of multi-head
attention module and produces a video representation with the di-
mension of dv=512. As mentioned previously, since video encoder
and query encoder have the same dimension, we omit the two pro-
jection matrices in Eq. (15) for compressing the size of parameters.
The number of hard negative samples used in Eq. (16) is 5.

On LSMDC, following [27], we use 300-DGoogleNews pre-trained
word2vec word embeddings as the input of a unidirectional LSTM
with the hidden size of 512, followed by our tree construction and
the query attention network using the same setting with MSR-VTT.
Since [27] did not release the frame-level features, we directly use
the provided multi-modal video-level features (appearance, motion,
audios and face) to evaluate the effectiveness of our complex-query
modeling module. Note that we do not use the gated embedding
module and weighted-fusion of similarity scores in [27]. We first
transform the multiple-modal features to the default embedding
spaces in [27] with multiple projection matrices and concatenate
the multiple features into a long vector, followed by a feature trans-
formation into the 512-D joint embedding space.

4.1.3 Evaluation Metrics. Following the setting of [7, 27, 49], we
report the rank-based performance metrics, namely R@K (K =
1, 5, 10) and Median rank (MedR). R@K is the percentage of test
queries for which at least one relevant item is found among the top-
K retrieved results. MedR is the median rank of the first relevant
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Table 2: State-of-the-art performance comparison (%) on
LSMDC [33]. Our TCE performs the best with a much lower-
dimensional embedding (512-D). The Mot. and Aud. refer to
the motion feature and audio feature, respectively.

Method R@1 R@5 R@10 MedR
C+LSTM+SA+FC7 [40] 4.3 12.6 18.9 98
VSE-LSTM [15] 3.1 10.4 16.5 79
SNUVL [50] 3.6 14.7 23.9 50
Kaufman et al. [14] 4.7 15.9 23.4 64
CT-SAN [51] 5.1 16.3 25.2 46
Miech et al. [26] 7.3 19.2 27.1 52
CCA (FV HGLMM) [16] 7.5 21.7 31.0 33
JSFusion [49] 9.1 21.2 34.1 36
Miech et al. . [28] 7.2 18.3 25.0 44
MEE [27] 10.2 25.0 33.1 29
TCE (Visual) 7.9 20.8 27.8 46
TCE (Visual+Mot.) 9.7 23.3 34.8 32
TCE (Visual+Mot.+Aud.) 10.6 25.8 35.1 29

item in the search results. Higher R@K and lower MedR indicate
better performance.

4.1.4 Training Details. Our work is implemented using the Py-
Torch framework. We train our model using the ADAM optimizer
and use an initialized learning rate of 0.0005 with a batch size of
128. Each epoch training is just performed using a single GPU and
takes no more than 10 minutes.

4.2 Experimental Results and Analysis
4.2.1 Comparison with State-of-the-Arts. To answer the research
question R1, we compare our proposed Tree-augmented Cross-
modal Encoding (TCE) with recently proposed state-of-the-art
methods: (1) RNN-based methods: DualEncoding [7], Kaufman et
al. [14], CT-SAN [51], SNUVL [50], C+LSTM+SA+FC7 [40], and
VSE-LSTM [15], (2) Multimodal Fusion methods: Mithun et al. [30]
, MEE [27], MMEN [43], and JPoSE [43], and (3) other methods:
JSFusion [49], CCA (FV HGLMM) [16], and Miech et al. [26]. The
experimental results on MSR-VTT and LSMDC are summarized,
respectively, in Table 1 and Table 2. Note that there are different
dataset splitting strategies of the MSR-VTT dataset. To fairly com-
pare with the reported results of state-of-the-art methods, we first
report our results based on the standard split from the official pa-
per [44] and then evaluate our method on the other two splits
from [27] and [49], respectively. Unless otherwise stated, we use
unidirectional RNNs (512-D) in our experiments by default.
MSR-VTT: Table 1 clearly shows that our proposed TCE outper-
forms all other available methods in all three dataset splits. Specifi-
cally, on the first split [44], we surpass the results of DualEncoding
[7] w.r.t. R@5, R@10, and MedR. DualEncoding is the best reported
state-of-the-art method on the first split that fuses multi-levels tex-
tual and video features for joint embedding learningwith the embed-
ding size of 2048. While, our TCE just uses the temporal/sequential
features (i.e., the 2nd level features in DualEncoding) with the final
embedding size of 1024 for retrieval. Hence, TCE is able to report
higher retrieval accuracy while using a much smaller embedding

size. TCE also outperforms the multimodal fusion (object, activ-
ity, and audio) method in Mithun et al. [30] by a large margin,
which indicates the effectiveness of our proposed tree-augmented
query modeling and temporal-attentive video sequence modeling
methods. Note that our proposed TCE can achieve consistent per-
formance improvement if we integrate some other modalities, like
motion features or audio features into the video embedding. We
evaluate our method in the multi-modality setting on LSMDC (See
Table 2). For the second split [27], we observe a large improvement
over the state-of-the-art JPoSE which disentangles the text query
into multiple semantic spaces (Verb, Noun) for score-level fusion.
Compared with JPoSE, TCE directly composes a latent semantic
tree to describe the user complex query in an end-to-end manner
and also includes an attention mechanism to capture the most in-
formative constituent nodes in the tree. A similar improvement can
also be observed in the third split [49], which further validates the
effectiveness of TCE.
LSMDC: Table 2 compares the performance of TCE with nearly
all reported results on the LSMDC video clip retrieval task. The
results again show that our proposed TCE performs the best on
this challenging benchmark dataset. Specifically, we outperform
the MEE method by a relative improvement of 6% w.r.t. R@10. We
use the same multi-modal video features with MEE, but with a
simpler feature fusion strategy, i.e., concatenation. We can observe
a more significant improvement over the JSFusion method, which
is the winner of the LSMDC 2017 Text-to-Video and Video-to-Text
retrieval challenge. Besides, in Table 2, we also investigate the effect
of multi-modal fusion in our proposed TCE. Specifically, when we
just use the 2048-D globally-pooled appearance features to describe
the video, our model still outperforms most of the listed methods in
Table 2. By augmenting the video representation with the motion
feature, we can obtain a relative improvement of 25% w.r.t. R@10.
The audio features can further stably improve the performance.
That is to say, TCE has the potential of improving its performance
on MSR-VTT by leveraging more informative features. Since the
multi-modal fusion is not our focus in this paper, we leave the
fusion experiment on MSR-VTT for future study.

4.2.2 Ablation Studies. To effectively answer the research question
R2, we conduct extensive ablation studies on MSR-VTT based on
the standard split. Specifically, we mainly organize the ablation
studies into two groups: one for query encoder and the other for
video encoder. The batch normalization is used to normalize the
query/video representation in the following counterparts.
On Query Encoder: We use the following baselines and variants
to transform the natural language queries to vector representations.
• WordEmb+AvgP andWordEmb+MaxP: Add a fully connected
(FC) layer after the word embedding layer and aggregate its
output with average-pooling (AvgP) operation or max-pooling
operation (MaxP).

• LSTM and LSTM+AvgP: Instead of composing the latent seman-
tic tree, we directly use the last hidden state (LSTM) or apply an
average-pooling over the output of LSTM (LSTM+AP).

• TCE (w/o-Cxt): Remove the memory-augmented context vector
ut in the score module (Eq. (6)) and directly normalize the scaled
dot-product between a global query vector and the hidden state
of nodes. It is the standard implementation in [4].
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• TCE (w/o-LSTM): Remove the leaf node LSTM module. Instead,
we use an FC layer to transform the word embedding to the
default input of TreeLSTM.

• TCE (w/o-TAtt)+AvgP: Remove the text attention module in
Eq. (9), instead, we use the average-pooling operation.

On Video Encoder: We use the following baselines and variants
to transform videos to vector representations.

• Frame+AvgP and Frame+MaxP: Use a FC layer to first trans-
form the frame features, followed by average-pooling (AvgP) or
max-pooling (MaxP).

• GRU and GRU+AvgP: Directly use the last hidden state of GRU
or apply average-pooling over the output of GRU (GRU+AvgP).

• TCE (w/o-Mha): Remove the multihead attention module.
• TCE (w/o-GRU): Replace the GRU module with a FC layer to
transform the frame embedding.

• TCE (w/o-VAtt)+AvgP: Remove the temporal video attention
module in Eq. (13) with an average-pooling operation instead.

Note that in the ablation studies, we only change one (e.g., query)
part of our proposed TCE to the above baselines or variants, while
keeping the rest of TCE (e.g., video) unchanged.

Table 3 shows the performance comparison of our proposed full
TCE model with different ablations on the MSR-VTT dataset.

• Overall, we observe that our full model performs the best except
in terms of MedR. Removing each component from TCE, such
as Cxt, Mha, LSTM/GRU, and TAtt/VAtt, would result in relative
performance degeneration, but not dramatically. It not only re-
flects the effectiveness of each component of our TCE, but also
shows the robustness of our method. Each module can effectively
complement each other, but is not very sensitive to each other.

• There are also some interesting findings: the RNNs do not play
a much more important role than we wish in this task. Com-
pared with the baselines WordEmb+AvgP and Frame+AvgP, the
LSTM and GRU help to improve the accuracy by a small margin,
due to the modeling of the dependence between words/frames.
However, if we remove LSTM or GRU from our query encoder
or video encoder, the model exhibits a minor performance de-
generates. TCE (w/o-LSTM) and TCE (w/o-GRU) still report high
accuracy. This indicates the effectiveness of our latent seman-
tic tree in capturing the structure information of the complex
queries. It also reveals the necessity of the temporal interaction
module that models the frame-wise feature interaction beyond
the dependence between consecutive frames.

• We also observe that the widely used average-pooling strategy
does not performs well for the complex-query video retrieval
task. Our introduced attention mechanisms in Eq. (9) and (13)
performs well by attending to the informative constituent nodes
and frames.

4.2.3 Analysis on Different Types of Queries.(R3). To investigate
how our proposed TCE perform on different groups of complex
queries, we group 59,800 test queries of the MSR-VTT dataset (Data
split from [44]) according to their query lengths and categories. We
compare TCE on different groups with the baseline model DualGRU
which utilizes the bidirectional GRU with average pooling for both
text encoding and video encoding. The performance comparison

Table 3: Ablation studies on the MSR-VTT dataset using the
standard dataset split [44] to investigate the effects of the
tree-based query encoder and the temporal-attentive video
encoder. The proposed method performs the best.

Method R@1 R@5 R@10 MedR
On Query Encoder
WordEmb+AvgP 6.79 20.98 30.68 32
WordEmb+MaxP 5.92 18.90 27.82 40
LSTM 6.91 21.31 31.17 31
LSTM+AvgP 6.95 21.28 30.68 35
TCE (w/o-Cxt) 6.98 21.46 31.49 30
TCE (w/o-LSTM) 7.09 21.86 31.67 31
TCE (w/o-TAtt)+AvgP 6.59 20.57 30.48 34
On Video Encoder
Frame+AvgP 6.67 20.41 29.89 36
Frame+MaxP 6.20 20.24 29.87 35
GRU 6.75 21.03 30.91 31
GRU+AvgP 6.17 19.51 28.71 38
TCE (w/o-Mha) 6.97 21.59 31.19 31
TCE (w/o-GRU) 7.08 21.96 31.86 30
TCE (w/o-VAtt)+AvgP 6.73 21.38 31.74 29
TCE 7.16 21.96 32.04 30

(a) Grouped by query lengths.
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Figure 3: Performance comparison of DualGRU and our
proposed TCE on MSR-VTT. Queries have been grouped in
terms of (a) query lengths and (b) query categories.

in each group by query lengths and categories are shown in Fig-
ure 3(a) and 3(b), respectively. In Figure 3(a), our proposed TCE
consistently outperforms the DualGRU in all groups with different
query lengths, showing its effectiveness in complex query modeling.
Especially, we clearly observe that with increasing query lengths
(from left to right in Figure 3(a)), the performance gain of TCE over
DualGRU becomes much more significant. Generally, the longer
queries aremore complex than the shorter queries. As demonstrated
in Figure 3(a), the query “a crowd appears then a hockey game is
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Query 1: a boy band performs and signs 
autographs

signsandbandboya autographsperforms

Query 2: a cartoon of a person playing 
instruments

playingpersonaofcartoona instruments

√

√

0.100 0.094

0.115 0.107

0.265

0.318

0.053 0.057

0.0100.096

0.236

0.547 √

womenandmenofclipa dancing at receptiona

0.034 0.071
0.008

0.071
0.059

0.129

0.114

0.211

0.284

Query 3: a clip of men and women dancing 
at a reception

Query 4: a car has been parked in front of 
the building

inparkedbeenhascara front of the building

0.074
0.106

0.167 0.029

0.275

0.265

0.026 0.031

0.026

√

Figure 4: Four examples obtained by our TCE model on MSR-VTT. The composed latent semantic trees are presented under
the corresponding queries. The normalized node weights are also shown. Videos with red marks are the correct ones.

being played followed by a basketball team playing on a court” is
more complex than the query “a music video”. Hence, the results
validates that our proposed TCE is better in handling the complex
queries, mainly benefiting from the latent semantic tree. In Figure
3(b), the performance in different query categories varies greatly,
showing the varying difficulty of queries in different categories.
For instance, the performance on the query group of sports/actions
is higher than 0.25, while only about 0.13 on the query group of
news/politics. The observation is reasonable since the sports/actions
scenes are easy to be visually distinguished, while the news/politics
scenes are much more diverse, and it is hard to learn the relation
between news words and the visual scenes with limited training
data. Despite the varied difficulty for each group, our proposed TCE
model consistently beats the baseline on all groups.

4.2.4 Qualitative Analysis. Figure 4 shows four cases of qualita-
tive results about the composed tree structures and the retrieved
videos. For each query, the top three videos retrieved from the MSR-
VTT are showed. Although only one correct video is annotated
for each query, the retrieved three videos in Figure 4 are typically
semantically relevant to the given query to some extent, showing
the effectiveness of TCE. We observe that our approach is able to
construct syntactically reasonable tree structures (e.g., Query 1 and
Query 2) and also identify the informative constituent nodes based
on the attentionmechanism, thus being helpful to better understand
the complex query. For example, in Query 1, “performs and signs
autographs” describes the action of the video clip, which is easy
to be visually distinguished and usually reflects the main search
intention, whose corresponding node in the tree was assigned a
relatively large weight of 0.265. In Query 2, “a person playing in-
struments” refers to the key search intention, whose corresponding
node in the tree was assigned a relatively large weight of 0.236. For
Query 3, the composed tree is far from perfect, while the node “at a”
contains less semantic information and was reasonably assigned the
smallest attention weight of 0.008. For Query 4, the composed tree
is syntactically reasonable, but some relative important nodes were
assigned with small attention weights. Although some noises have
been introduced in the latent semantic tree construction, our model
still finds relevant videos for Query 4, which shows the robustness
of our model.

5 CONCLUSION
In this work, we proposed a novel framework for complex-query
video retrieval, which consists of a tree-based complex query en-
coder and a temporal attentive video encoder. Specifically, it first
automatically composes a latent semantic tree from words to model
the user query based on a memory-augmented node scoring and
selection strategy and then encodes the tree into a structure-aware
query representation based on an attention mechanism. Besides,
it jointly models the temporal dependence between frames and
frame-wise temporal interaction in the temporal attentive video
encoder, followed by an attentive pooling mechanism to vectorize
the video. This work provides a novel direction for complex-query
video retrieval by automatically transforming the complex query
into an easy-to-interpret structure without any syntactic rules and
annotations. In the future, we will explore the proposed approach
for other language-guided video tasks, such as video moment re-
trieval with natural language [23]. We also plan to integrate the
multimedia indexing technique [11] with our approach for large-
scale retrieval. We are also interested in exploring the external
knowledge to enhance the text representation learning and the tree
construction [2, 3] in the future study.
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