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ABSTRACT
This paper describes our solution for the Hulu Challenge. To answer
the challenge, we introduce two content-based models, namely,
Cascading Mapping Network (CMN) and Relevant-Enhanced Deep
Interest Network (REDIN). CMN predicts video Click-Through Rate
(CTR) by predicting content-based video relevance. REDIN mainly
improves the popular Deep Interest Network by adding explicit
video relevance constraint, which provides guidance for low-level
video feature learning thus helpful for CTR prediction. Based on the
two models, our solution obtains Area Under Curve (AUC) score of
0.6022 and 0.6155 on the TV-shows and Movie track respectively.
What is more, we are one of the only two teams giving scores of
over 0.6 on both tracks. The results justify the effectiveness and
stability of our proposed solution.
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1 INTRODUCTION
In the Hulu Challenge, given a list of videos that a user has viewed
in history, participants are asked to predict whether the user will
click a new candidate video, which is a standard Click-Through
Rate (CTR) prediction problem. CTR prediction is a critical problem
in a recommendation system. As for video recommendation, we
need to estimate the probability of a given video being clicked by a
specific user and accordingly show those videos having the highest
probabilities to that user. Recently, due to the wide application of
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deep learning, embedding and multi-layer perceptron (MLP) have
become the standard methodology for CTR prediction. Raw features
are first embedded into a specified-dimension space, and then feed
into fully connected layers to estimate whether the user will like
the candidate item. Existing CTR prediction approaches such as
wide and deep learning (Wide&Deep) [3], deep and cross network
(DCN) [17], deep factorization machine (DeepFM) [9] all follow
the paradigm of first embedding and then MLP. Although these
methods have demonstrated promising performance in the context
of Android apps, advertisement recommendation, their effective-
ness for video recommendation has not been justified. Moreover,
these models lack explicit modeling of item-wise relevance, which
is crucial for content-based video recommendation[2, 7].

Considering the fact that a user is likely to click a candidate video
if the candidate video is relevant to some videos watched by him/her,
we argue that exploring video relevance is essential for CTR predic-
tion in the context of video recommendation. Some efforts [18, 19]
have been made along this direction. For instance, Deep Interest
Network (DIN) [19] learns the user interests by considering the
relevance between the candidate video and user’s watched videos.
It applies attention mechanism to softly search for related videos in
watched videos. However, there is no explicit relevance constraint
for video relevance learning, which may affect its performance.
Besides, as DIN uses one-hot encoding to present video and do not
consider the video content, such as visual feature, it cannot deal
with newly uploaded videos that have few interactions with users,
which is known as cold-start problem.

In this work, departing from the content-based video relevance,
we propose twomodels, namely,CascadingMapping Network (CMN)
and Relevant-Enhanced Deep Interest Network (REDIN). CMN pre-
dicts click probability by measuring the relevance between the can-
didate video and previously watched videos. If a candidate video
is relevant with most of the previously watched videos overall,
CMN tends to give a high probability otherwise a low probability.
Although the idea is simple, CMN is effective for CTR prediction.
Additionally, our REDIN improves the popular DINmodel by adding
explicit video relevance constraint, which provides guidance for
low level video feature learning thus helpful for CTR prediction.
Theoretically, the video relevance constraint can be extended to
other deep learning based CTR models. It is worth noting that our
proposed models utilize the video content to predict CTR, naturally
solving the cold-start problem. Finally, the two models are trained
individually and then combined by late fusion for CTR prediction in
the testing phase. Based on these, our solution obtains AUC score
of 0.6022 and 0.6155 on the TV-shows and Movie track respectively.
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2 CHALLENGE DATA
The HULU challenge1 has two separated tracks: TV-series and
Movies. Each track provides a dataset, and the dataset is composed
of a bunch of viewer records and the corresponding video content.
For the viewer record, it is given in the form of {V ,vc ,y}, where
V denote n previously watched videos {v1,v2,v3, ...,vn } in a time
sequence by a user, vc indicates recommended candidate video and
y ∈ {0, 1} is the ground-truth label. The label y indicates whether
the user clicked the candidate video vc given a video watching
history V . Note that the number of previously watched video n
is 10 for TV-series track while 5 for Movies Track. For the video
content, the challenge organizers do not provide original videos
due to legal and copyright issue. Instead, they provide extracted
features by pre-trained CNNmodel, that is visual and audio features.
Specifically, for visual features, two kinds of features are provided,
i.e., a 2,048-dim Inception-v3 [1] feature per frame and a 512-dim
R(2+1)D [16] feature per clip. For audio feature, a 128-dim VGGish
[11] feature per clip is provided, which is extracted by pre-trained
VGGish model and PCA is employed to reduce its dimensionality.
We refer the interested reader to the challenge for more details
about the features. Before feeding videos to the following models,
we choose to first represent each video as a video-level feature
vector. As the number of visual and audio features varies over the
video, we employ mean pooling, which is simple yet found to be ef-
fective in multiple content-based tasks [4, 5, 15]. For more advanced
video representation, we refer to [6]. Finally, after applying L2 nor-
malization on each feature individually, the three kinds of features
are concatenated to represent the video content. To simplify our
notation, letv indicate a video and a 2688-dim concatenated feature
vector that describes the video content.

3 PROPOSED SOLUTION
Given a user’s video watching history V and a candidate video
vc , participants are asked to predict the probability p(V ,vc ) of the
user will click on the candidate video. To this end, we propose two
models, i.e., Cascading Mapping Network and Relevant-Enhanced
Deep Interest Network.

3.1 Cascading Mapping Network
Inspired by the fact that a user is likely to click a candidate video if
the candidate video is relevant to some videos watched by him/her,
we predict the click probability score by measuring the relevance
between the candidate video and watched videos. To be specific,
we first compute the relevance of the candidate video with each
previously watched video, obtaining a sequence of relevance scores.
We then aggregate them by the mean operation as the final output.
Formally, the click probability score is defined as:

p(V ,vc ) =
1
n

∑
vi ∈V

r (vi ,vc ), (1)

where r (vi ,vc ) is the content-based video relevance between video
vi andvc . In our preliminary experiments, we also tried max opera-
tion but found its performance is worse than mean operation. Now
the CTR prediction problem is reduced to how to predict content-
based video relevance. The direct way is to compute their similarity
1https://github.com/cbvrp-acmmm-2019/cbvrp-acmmm-2019
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Figure 1: The proposed Cascading Mapping Network.

in terms of the video content features. However, the previous work
[7] pointed out that the off-the-shelf video feature is suboptimal for
video relevance prediction and the feature has to be re-learning in
the context of video recommendation. Following this good practice,
we propose a Cascading Mapping Network (CMN) to re-learn a new
video feature space where video relevance is better reflected for the
purpose of video CTR prediction. In what follows, we intrude the
model structure, followed by the model training strategy.

Model structure. As illustrated in Figure 1, the model consists
of two branches with shared trainable parameters. For each branch,
it has two mapping layers. Given a video, the first mapping layer
transforms its content feature into a hidden feature vector. Then,
the original content feature and the hidden feature are concatenated
to form an enhanced input of the second mapping layer, and further
projected into a new video feature space.

Model training. In order to make relevant video pairs near and
irrelevant video pairs far away in the new feature space, we consider
to utilize the common triplet ranking loss [8, 12] to train the model.
Specifically, we first construct a large set of triplets {(v,v+,v−)}
from the training set, wherev+ andv− indicate videos relevant and
irrelevant with respect to video v . Different from the commonly
mappingmodels [14] employ the loss on the final output, we employ
it on both hidden feature and final output feature. Concretely, the
loss function of a triplet (v,v+,v−) is:

L(v,v+,v−) = max(0,m1 − csϕ (v,v
+) + csϕ (v,v

−))

+α max(0,m2 − csϕ′(v,v+) + csϕ′(v,v−)),
(2)

where csϕ′(v,v∗) and csϕ (v,v
∗) denote the cosine similarity be-

tween v and v∗ in terms of the hidden feature and final output
feature respectively. Beside, α = 0.5 is a tradeoff parameter,m1 and
m2 represent the constant margin. Finally, we train the CSN model
by minimizing the loss over the training triplet collection.

Relevance prediction. After the model trained, we measure
the video relevance in terms of both hidden feature space and final
output feature. Formally, the video relevance of a video pair (v,v∗)
can be predicted as: r (v,v∗) = csϕ (v,v∗) + αcsϕ′(v,v∗).
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Figure 2: The proposed Relevant-Enhanced Deep Interest
Network.We improve theDeep Interest Network [19] by add
a feature mapping and a explicit video relevance constraint.

3.2 Relevant-Enhanced Deep Interest Network
Our second model is based on deep interest network (DIN) [19], the
state-of-the-art for CTR prediction. As mentioned in section 1 that
DIN suffers from cold-start problem, in this work we adapt it to
the cold-start scenario. Moreover, we improve it by adding explicit
video relevance constraint for model training.

Model structure. Figure 2 demonstrates the model structure
of proposed REDIN. In order to make the model be able to deal
with new videos, we feed the video content feature to the model
instead of one-hot encoding used in the original DIN model. Given
a video watching history V = {v1,v2,v3, ...,vn } and a candidate
video vc , we first employ a fully connected layer over the corre-
sponding content feature for feature mapping. The feature mapping
has two functions: one is to reduce the dimensionality of the video
feature, the other is to make the feature better suitable for the task
of CTR prediction. Following the DIN model, we then utilize an
attention module to pool the video watching history, resulting in
an attended history feature. The attended feature is computed as:
A(V ) =

∑
vi ∈V a(v ′

i ,v
′
c )v

′
i , where v

′
∗ indicates the mapped video

feature, and a(v ′
i ,v

′
c ) is an attention weight computed by a MLP

which is same with the original DIN. Finally, the attended feature
A(V ) and mapped candidate video feature v ′

c are concatenated and
further fed into a MLP for binary classification. The output of the
MLP is denoted as p′(V ,vc ).

Model training. In order to train the model, besides using a
binary cross entropy loss which is a widely used loss function in
deep CTR models [3, 10], we additionally add a video relevance
constraint. For a viewer record of (V ,vc ,y), the objective function
of REDIN is as

min y logp′(V ,vc ) + (1 − y) log(1 − p′(V ,vc )

s.t. y · r (V ,vc ) − (1 − y) · r (V ,vc ) > m.
(3)

wherem denotes a constant margin, r (V ,vc ) indicates the whole
relevance between watched videosV and candidate videovc , which

is measured by

r (V ,vc ) =
1
n

∑
vi ∈V

cs(v ′
i ,v

′
c ), (4)

where cs(, ) indicates the cosine similarity between correspond-
ing features. With the relevance enhanced constraint, the mapped
video feature will preserve the topological property of the videos;
similar videos will have similar representations, which is helpful
for training follow-up layers. Note the relevance constraint does
not introduce extra trainable parameters. This problem can be re-
formulated into the following form for the ease of optimization:

L(V ,vc ,y) = y logp1(V ,vc ) + (1 − y) log(1 − p1(V ,vc )
+α(ymax(0,m1 − r (V ,vc ))

+α(1 − y)max(0, r (V ,vc ) −m2)),
(5)

where α = 1 is a tradeoff parameter, m1 = 0.5 and m2 = 0.2
represent the constant. Finally, our REDIN is trained by minimizing
Eq. 5 over all the training examples.

Model prediction. Besides the click probability given by MLP,
we integrate thewhole relevance between the candidate andwatched
videos as the extra clue for prediction. Hence, the final click proba-
bility score p(V ,vc ) is predicted by:

p(V ,vc ) = αp′(V ,vc ) + (1 − α)r (V ,vc ), (6)

where α is a trade-off parameter, empirically set to be 0.7.

4 EVALUATION
4.1 Experimental Setup
Datasets. For the two provided challenge datasets, each dataset
has been officially divided into three disjoint subsets for training,
validation, and test. Detailed data split is as follows: training /
validation / test of 5,221,221 / 931,820 / 794,120 viewer records for
the TV-series track and 1,123,786 / 552,577 / 822,343 viewer records
for the Movies track. We train our proposed models on the training
set and evaluate performance on the validation set and test set.

Performance metric. Following the challenge evaluation pro-
tocol, we report the Area Under Curve (AUC) score.

Triplet generation.We first construct relevant video pairs and
the corresponding irrelevant video is randomly sampled from the
training videos. If a video vi and a video vj appear in a viewer
record, we call vi and vj are co-watched videos and deem it as
a relevant video pair. In our experiment, we only use the viewer
record with label y = 1 and combine the candidate video with each
previously watched video as relevant video pairs. We also utilize
all training viewer records but found no significant improvements
in our preliminary experiment.

Implementation details. We train both models using stochas-
tic gradient descent with Adam [13]. We empirically set the initial
learning rate to be 0.001 and batch size to be 64 for training CMN,
while 0.0001 and 256 respectively for REDIN.

4.2 Ablation Study
4.2.1 Effectiveness of CMN. The performance of CMN and other
counterparts are summarized in Table 1. Here the baseline method
indicates using cosine similarity between the corresponding off-the-
shelf content feature to predict the video relevance. 1-layer MLP
and 2-layer MLP denote using the corresponding MLP for feature
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Table 1: Performance of the proposedCMNmodel on the val-
idation set.Mean operation is used as relevance aggregation.

TV-series Movies

baseline 0.4060 0.5393
1-layer MLP 0.6792 0.5831
2-layer MLP 0.6546 0.6006
CMN 0.6856 0.6071

Table 2: Performance of the proposed REDIN model on the
validation set. FM denotes the Feature Mapping and RC in-
dicates the additional Relevance Constraint.

TV-series Movies

DIN 0.6160 0.6200
DIN + FM 0.6278 0.6311
DIN + FM + RC (REDIN) 0.6533 0.6428
DINgru 0.6175 0.6281
DINgru + FM 0.6246 0.6327
DINgru + FM + RC (REDINgru) 0.6316 0.6352

Table 3: Performance of our solution on the validation set.

TV-series Movies

random baseline 0.5000 0.5000
CMN 0.6856 0.6071
REDIN 0.6533 0.6428
Late fusion 0.7019 0.6528

learning by [7]. Unsurprisingly, the baseline performs worst, as the
off-the-shelf feature are not tailored for content-based video rele-
vance predication. Besides, the result also suggests that re-learning
the video feature is essential for video relevance prediction thus
benefits the video CTR prediction. Among the three learning-based
methods, our proposed CMN performs best.

4.2.2 Effectiveness of REDIN. Table 2 shows the performance of
REDIN variants on both datasets. Note that DIN uses the video
content feature as input thus being able to deal with the new videos.
Comparing the first two rows, we found that feature mapping
brings in performance gain, which shows the importance of feature
mapping on the input for content-based video CTR prediction.
Besides, our REDINmodel with both feature mapping and relevance
constraint gives the best performance. From the results, we conclude
that explicitly integrating the video relevance constraint in CTR
model is beneficial. Besides, we also try to use GRU to explore
temporal clues among watched videos. Concretely, we add a GRU
before the attention module (marked with gru). Although there is
no significant improvement, REDINgru with FM and RC performs
best. The results again verify the effeteness of feature mapping and
relevance constraint.

4.2.3 Effectiveness of late fusion. Table 3 summarizes the perfor-
mance of our solution. As a sanity check, we report the performance

Table 4: Leaderboard of the challenge. The performance is
evaluated by the organizers on the test set. Here teams are
ranked in terms of the sum of ranks on both tracks.

TV-series Movies
sum of ranks

AUC rank AUC rank

USTC_I_Know_U 0.6645 2 0.6523 1 3
this work 0.6022 4 0.6155 4 8
UESTC_cfm 0.6656 1 0.5858 7 8
MAGUS 0.5754 6 0.6520 2 8
potato 0.6510 3 0.5930 6 9
GrandRookie 0.5918 5 0.6124 5 10
XRGOGOGO 0.5000 12 0.6475 3 15
Distinc 0.5449 7 0.5732 10 17
Oases 0.5246 9 0.5838 8 17
MVAP 0.5400 8 0.5482 11 19
Dragon 0.5160 11 0.5755 9 20
MIDAS@CBVRP 0.5181 10 0.5337 12 22

of a random baseline, obtained by predicting a click probability
score with a random number. All the methods are noticeably bet-
ter than the random result, showing the effectiveness of proposed
models. Additionally, we perform the late fusion. To be specific,
we equally fuse dozens of models, including 1-layer MLP, 2-layer
MLP, CMN, REDIN, and REDINgru. Each model is trained with var-
ied setups including the dimensionality of relearned video feature
space for the first three models (1024 or 2048), the constant margin
m1, m2 and loss tradeoff α in Eq. 5 for the last two models. The
late fusion result consistently outperforms the single-model model.
This result suggests that late fusion is quite helpful for boosting
the CTR prediction performance.

4.3 Challenge Results
Table 4 shows the leaderboard of the challenge on two tracks. For
better performance, we submit the late fusion results in Table 3.
Although our solution is not the best, our results are quite stable for
both tracks. Concretely, our solution gives AUC scores of over 0.6
on both tracks. However, the majority of teams only perform well
on either one track, such as UESTC_cfm, MAGUS, potato; they only
give AUC score of over 0.6 on one track. Moreover, our solution
ranks tied second in terms of the sum of ranks on both tracks.

5 CONCLUSIONS
In this paper, we explore content-based video relevance for video
CTR prediction in the context of the HULU challenge and propose
two models, i.e., CMN and REDIN. CMN is a simple but very effec-
tive model, which predicts video CTR by video relevance prediction.
Compared with DIN, our proposed REDIN with adding an explicit
relevance constraint brings in clearly performance. Theoretically,
this constraint can be extended to other deep learning based CTR
models. Combined CMN and REDIN with late fusion, our solution
gives good and stable performance. We believe that exploring video
relevance is promising for video click-through rate prediction.
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