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ABSTRACT
In this paper, we summarize our works for cross-media retrieval
where the queries and retrieval content are of di�erent media types.
We study cross-media retrieval in the context of two applications,
i.e., image retrieval by textual queries, and sentence retrieval by
visual queries, two popular applications in multimedia retrieval. For
image retrieval by textual queries, we propose text2image which
converts computing cross-media relevance between images and tex-
tual queries to comparing the visual similarity among images. We
also propose cross-media relevance fusion, a conceptual framework
that combines multiple cross-media relevance estimators. �ese
two techniques have resulted in a winning entry in theMicroso� Im-
age Retrieval Challenge at ACMMM 2015. For sentence retrieval by
visual queries, we propose to compute cross-media relevance in a vi-
sual space exclusively. We contributeWord2VisualVec, a deep neural
network architecture that learns to predict a visual feature represen-
tation from textual input. With proposed Word2VisualVec model,
we won the Video to Text Description task at TRECVID 2016.

KEYWORDS
Cross-media retrieval, Image retrieval by textual queries, Sentence
retrieval by visual queries

1 INTRODUCTION
With the rapid development of Internet techniques, smart mobile
devices and social media, people can readily create multimedia con-
tents by themselves, which lead to the deluge of multimedia data.
Hence, e�cient and e�ective multimedia retrieval tools become a
big demanding for people. In my doctoral research, we focus on
text, images, and videos, three types of widely used media. We aim
to a�ack the challenging problem of cross-media retrieval where
the queries and retrieval content are of di�erent media type. For
example, given an image, �nd sentences relevant to the image. �e
key of cross-media retrieval is computing the cross-media relevance
between queries and retrieval content. As the representations of
di�erent media types are inconsistent and reside in di�erent fea-
ture spaces, they are not directly comparable. So it is extremely
challenging to compute cross-media relevance among them. Hence,
the fundamental question we try to answer during the PhD study
is: “What determines the cross-media relevance for cross-media re-
trieval?”. We answer the question in the context of image retrieval
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by textual query, and sentence retrieval by visual queries, two pop-
ular applications in multimedia retrieval. In [7, 9], we propose a
text2image model and cross-media relevance fusion using click-
through data for image retrieval by textual query. In [8, 29], we
propose to compute cross-media relevance in a deep visual space
for sentence retrieval by visual queries.

In order to train a cross-media relevance computation model,
labeled data play the crucial role. Typically, the labeled data is an-
notated by humans. However, manual annotation is labor intensive
and time-consuming, which makes well-labeled data expensive.
�e lack of high-quality labeled data limits the quality of cross-
media retrieval systems. However, there are massive amount of
click-through data from commercial search engines. Taking click-
through data from the image search engine as an example [15], it is
comprised of triads of (textual query, imaдe, click), where click is
the accumulated amount of user clicks a speci�c image has received
with respect to a given query. And the click re�ects to some extent
the relevance of the image with respect to the query, which opens
a new way for multimedia retrieval study. So the �rst question that
we try to investigate is: “What is the value of click-through data for
cross-media retrieval?”. Given a large amount of click-through data
from the commercial image search engine, we propose a text2image
model for image retrieval by textual queries, which compares favor-
ably to recent deep learning based alternatives. Moreover, di�erent
cross-media relevance estimators have their own di�erent mech-
anisms to compute the relevance, so they may complement each
other. Hence, computing cross-media relevance using one estima-
tor tends to be limited. We propose cross-media relevance fusion
which combines relevance scores from multiple cross-media rele-
vance estimators.

As text, images and videos are three distinct modalities, they
have to be represented in a common space wherein the cross-media
relevance between them can be computed. Hence, the choice of
the common space is an important point for cross-media relevance
computation. Previous works [16, 17, 20, 33, 36] for multimedia
retrieval prefer to represent the visual and lingual modalities in a
common latent subspace, before computing their relevance. How-
ever, there are other alternatives of common space. So our second
question arises as: “What common space is suited for cross-media
relevance computation?”. In [8], we explore utilizing a deep visual
feature space as the common space for sentence retrieval by visual
queries. We propose Word2VisualVec that predicts a deep visual
feature representation from textual input, and compute the cross-
media relevance in the visual feature space exclusively. To the best
of our knowledge, we are the �rst to solve the sentence retrieval
problem in the visual space only.

�e remaining sections are organized as follows. We describe
the current state-of-the-art in Section 2, followed by our proposed
models and experimental results in Section 3. Conclusions and
further work are given in Section 4.



2 RELATEDWORK
�e key of cross-media relevance computation is to represent dis-
tinct modalities into a common space. What ma�ers are forms of
the embeddings and objectives to be optimized. So we review the
state of the art in these two aspects.

Regarding the forms, the main stream is to place a�ne transfor-
mations on the di�erent modality sides to construct a latent space
[2, 5, 27]. Depending on the choice of objectives, the embedding
technique is known as Canonical Correlation Analysis (CCA) if one
aims to maximize the correlation between embedding vectors of
distinct modalities [25, 27], or as Polynomial Semantic Indexing
(PSI)[2] if a marginal ranking loss is minimized. In [24], Pan et
al. propose to minimize the distance of relevant pairs in the latent
space, with regularization terms to preserve the inherent structure
in each original space. A recent work by Yao et al. [36] considers a
joint use of CCA and PSI, achieved by �rstly �nding a latent space
by CCA and then re-adjusting the space to incorporate ranking
preferences from click-through data. Habibian et al. [13] leverage a
textual projection matrix and a visual projection matrix to embed
both videos and sentences into a latent subspace.

For the success of deep learning in computer vision and natural
language processing, we observe an increasing use of such tech-
niques as an alternative to the a�ne transformation. In [38], for
instance, Yu et al. use a deep Convolutional Neural Network (CNN)
for image embedding, while keep the transformation at the text side.
In the DeViSE model developed by Frome et al. [12], the common
space is formed by a pre-trained word2vec model [22], where the
embedding vector of a text is obtained by average pooling of the
vectors of its words. In a follow-up work, Norouzi et al. employ
word2vec for both text and image embedding [23]. In their ConSE
model, an image is embedded into the word2vec space, achieved
by a convex combination of the word embedding vectors of the
visual labels predicted to be most relevant to the image. Kiros et
al. [16] use Long Short Term Memory (LSTM) and CNN to embed
sentence and image with a ranking loss which ensures that relevant
sentences for an image rank above irrelevant ones, also ensures
relevant images for a sentence rank above irrelevant images. Wang
et al. [32] introduce a two-branch neural network to project images
and sentences into a latent subspace, using a ranking based loss
similar to [16].

Previous works [3, 24, 36] aim to propose a new model to com-
pute relevance among di�erent multimedia data, while we propose
cross-media relevance fusionwhich is designed to combine di�erent
models as an extension to methods for cross-media relevance com-
putation. Moreover, di�erent from the existingworks [16, 16, 32, 39]
that rely on a joint subspace, we propose to perform sentence re-
trieval by visual queries directly in the visual space. �is change is
important as it allows us to completely remove the learning part
from the visual side and focus our energy on learning an e�ective
mapping from natural language text to the visual feature space.

3 WORK IN PROGRESS
3.1 Image Retrieval by Textual�eries
Given an unlabeled image x and a textual query q, we aim to con-
struct a real-valued function f (x ,q) that computes the cross-media
relevance for the given image-query pair. Similar to previous works
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Figure 1: A conceptual diagram of the proposed cross-media
relevance fusion.

[7, 24, 38], we also compute the relevance based on large-scale click-
through data, denoted as D = {(textual query, imaдe, click)}. We
propose a text2image model, inspired by [11, 31] but redesigned to
be�er exploit click-through data and cross-media relevance fusion
that combines distinct cross-media relevance estimators [7, 9].

text2image. text2image presents a novel test query by a set of
images selected from large-scale click-through data, thus computing
cross-media similarity between the test query and a given image
boils down to comparing the visual similarity between the given
image and the selected images. Specially, given a test query q, we
�rst retrieve the top k most similar textual queries, denoted as
{q1, . . . ,qk }, from D. In order to represent the test query q by a
set of truly relevant images, for each candidate image xi from the
j-th neighbor query qj , we estimate the relevance between the test
query and the candidate image by jointly considering the relevance
between xi and qj and the relevance between qj and q, i.e.,

simt2i (xi ,q) := log(clicki, j ) · sim(q,qj ). (1)

Accordingly, we sort all the candidate images in descending order by
simt2i (xi ,q), obtaining an ordered list of images {x1, . . . ,xk ′}. Note
that for a candidate image that is associated with multiple queries,
its simt2i score is accumulated over the queries. Consequently,
cross-media relevance between the image x and the textual query
q is computed as a weighted sum of the visual similarity between x
and {x1, . . . ,xk ′}. �at is,

ft2i (x ,q) :=
1
k ′

k ′∑
i=1

sim(x ,xi ) · simt2i (xi ,q). (2)

Cross-media relevance fusion. A conceptual diagram of cross-
media relevance fusion is illustrated in Fig. 1. Given some existing
cross-media relevance estimators, such as image2text [26], seman-
tic embedding models [12, 23], we can obtain a series of relevance
scores for each given image-query pair. For a given image-query
pair, let { fi (x ,q)|i = 1, . . . ,d} be cross-media relevance scores com-
puted by d distinct models. We consider the following late fusion
strategy, for its simplicity and �exibility to employ a number of



Table 1: Comparison to the State-of-the-art for image re-
trieval by textual query on Clickture-dev.

Method NDCG25

CCA [25] 0.5055
CCL [24] 0.5059
BoWDNN [3] 0.5089
MRW-NN [33] 0.5104
RCCA [36] 0.5112
text2image (this work) 0.5153

o�-the-shelf learning to rank techniques:

fΛ(x ,q) :=
d∑
i=1

λi · φ(fi (x ,q)), (3)

where Λ = {λi } are weights to be optimized, and φ(·) is a sigmoid
function for rescaling the input.

For the fusion weights, the simplest choice is to take uniform
weights. Despite its simplicity, this choice o�en works well in prac-
tice when the similarity functions to be fused are relatively close
in terms of their performance and complementary to each other.
Once some ground truth data are provided, a range of learning
to rank algorithms can be employed to �nd be�er weights. We
utilize Coordinate Ascent [21], a greedy algorithm capable of di-
rectly optimizing (non-di�erentiable) performance metrics such as
Normalized Discounted Cumulated Gain (NDCG) adopted in our
experiments.

Experimental Results. We compare our proposed text2image
with a number of state-of-the-art models on Clickture-dev [15].
As shown in Table 1, our simple text2image model gives a larger
NDCG25 score than all other advanced heavily trained models.
Moreover, we combine the text2image with four models (PSI[2],
DeViSE[12], ConSE[23], image2text[26]) by our proposed cross-
media relevance fusion, which further improves the performance.
�e detailed results on can be referred to [9].

Inspired by the result that simple text2image compares favorably
to the heavily trained models, our ongoing work is trying to reveal
the merit and limit of the current image retrieval models. To this
end, we introduce query visualness, a quanti�able property for
categorizing large-scale queries. �ery visualness is found to be
correlated with image retrieval performance. We initially have
observed that the advanced models are good at answering queries
of high visualness, such as the query of wolf, while it performs
worse on queries of low visualness, such as the query of quote and
saying.

3.2 Sentence Retrieval by Visual�eries
Inspired from the good performance of our text2image model com-
pared to the state-of-the-art, we proposeWord2VisualVec, a deep
neural network architecture that learns to predict a visual feature
representation from textual input [8, 29]. Di�erent from text2image
that depends on utilizing a set of images to represent textual queries,
Word2VisualVec directly predicts a visual feature representation
for text. We apply Word2VisualVec to sentence retrieval by visual

Figure 2: We propose to perform sentence retrieval by vi-
sual queries in a visual feature space exclusively, which is
achieved by Word2VisualVec (W2VV).

queries which ranks a set of sentences in terms of their relevance to
a given image or video. And we propose to compute their relevance
in a visual feature space exclusively, as illustrated in Fig. 2.

Word2VisualVec. For the ease of reference, let ϕ(x) ∈ Rd
be a d-dimensional feature vector of visual instance x and q be
textual input. To handle sentences of varied length, we choose
to �rst vectorize each sentence as vector s(q). In particular, we
consider two common text vectorization strategies, i.e., bag-of-
words and word2vec. Bag-of-words is a classical representation
used in text analysis. Each dimension in a bow vector corresponds
to the occurrence of a speci�c word in the input text. For word2vec,
we obtain the embedding vector of the sentence by mean pooling
over its words. We train a word2vec model on Flickr tags, as recent
studies suggested that it be�er captures visual relationships than
its counterpart learned from web documents [4, 19]. �e sentence
vector s(q) goes through subsequent hidden layers until it reaches
the output layer r (q), which resides in the visual feature space. More
concretely, by applying l a�ne transformations on s(q), followed
by an element-wise ReLU activation σ (z) = max(0, z), we obtain
the output layer r (q) of Word2VisualVec by:

h1(q) = σ (W1s(q) + b1),
hi (q) = σ (Wihi−1(q) + bi ), i = 2, ..., l − 2,
r (q) = σ (Wlhl−1(q) + bl ),

(4)

where W. and b. indicate a�ne transformation and bias terms
respectively. Pu�ing all trainable parameters together, we represent
it as θ = [W. ,b.]. In order to reconstruct the visual feature ϕ(x)
directly from q, we use Mean Squared Error (MSE) as our objective
function. We train Word2VisualVec to minimize the overall MSE
loss on a given training set D = {(x ,q)}, containing a number of
relevant image/video-sentence pairs:

argmin
θ

∑
(x,q)∈D

(r (q) − ϕ(x))2. (5)



Table 2: Comparison to the State-of-the-art for sentence re-
trieval by image queries on Flickr8k and Flickr30k.

Flickr8k Flickr30k

R@1 R@5 R@10 R@1 R@5 R@10

Ma et al. [20] 24.8 53.7 67.1 33.6 64.1 74.9
Kiros et al. [16] 23.7 53.1 67.3 32.9 65.6 77.1
Klein et al. [17] 31.0 59.3 73.7 35.0 62.0 73.8
Lev et al. [18] 31.6 61.2 74.3 35.6 62.5 74.2
Plummer et al. [28] – – – 39.1 64.8 76.4
Wang et al. [32] – – – 40.3 68.9 79.9

Word2VisualVec 35.2 64.6 76.7 41.6 69.2 79.2

Sentence retrieval by image queries. A�er Word2VisualVec
trained on image-sentence pairs, sentences can be directly mapped
into a deep visual feature space by e�cient forward computation
through the Word2VisualVec network. Given a test image, we rank
all candidate sentences in terms of their cosine similarity with the
given image in the visual space. In this experiment, we use bag-of-
words for sentence vectorization which yields be�er performance
than word2vec. Table 2 presents the performance of the State-
of-the-art models on two popular benchmark sets, Flickr8k [14]
and Flickr30k [37]. Word2VisualVec compares favorably against
the state-of-the-art. Notice that Plummer et al. [28] employ extra
bounding-box level annotations. Still our results are be�er, which
indicates that we can expect further gains by including locality in
the Word2VisualVec representation. As all the competitor models
use joint subspaces, the results justify the viability of directly using
the deep visual feature space as common space for sentence retrieval
by image queries. Additionally, Word2VisualVec is designed to
predict a visual feature representation of text, so it can also be used
for text embedding. In [6], we employ Word2VisualVec for tag
embedding to enrich the current low-level input to LSTM on the
top of a neural image captioning model [30], which leads to be�er
performance.

Sentence retrieval by video queries. Word2VisualVec is used
in a principled manner for sentence retrieval by video queries,
transforming an input sentence to a video feature vector, let it be
visual or visual-audio. For the sake of clarity, we term the video
variantWord2VideoVec. �e visual feature vector of each video is
obtained by averaging the feature vectors of its frames. For the
audio feature, we extract a bag of quantized Mel-frequency Cepstral
Coe�cients (MFCC) [10] and concatenate it with the previous visual
feature. Word2VideoVec is trained on relevant video-sentence pairs
to predict such a visual-audio feature, as a whole, from textual input.
In order to verify the viability ofWord2VideoVec, we participated in
the Video to Text Description task at TRECVID 2016 organized by
NIST [1]. �e test set consists of 1,915 videos collected from Twi�er
Vine. For each test video, participants are asked to rank all sentences
in the two provided sets, denoted as set A and set B. Due to space
limit, we only report results on the set A. Results on the set B are
similar. NIST also provides a training set of 200 videos, which we
consider insu�cient for training Word2VideoVec. Instead, we learn
the network parameters on MSR-VTT [34], with hyper-parameters

Figure 3: Comparison to the State-of-the-art for sentence re-
trieval by video queries on TrecVid 2016 benchmark.

tuned on the provided TrecVid training set. We use word2vec to
vectorize sentence as the training data is limited. �e performance
metric is Mean Inverted Rank at which the annotated item is found.
As shown in Fig. 3, Word2VideoVec leads the evaluation in the
context of 21 submissions from seven teams worldwide. Moreover,
the results can be further improved by predicting the visual-audio
feature.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we summarize our study on cross-media relevance
computation. For image retrieval by textual query, we propose
text2image using a large amount of click-through data, which com-
pares favorably to deep learning based alternatives. And the results
can be further improved by our proposed cross-media relevance
fusion. For sentence retrieval by visual queries, we propose to
compute cross-media relevance in a deep visual feature space. Our
proposed Word2VisualVec outperforms the state-of-the-art, which
justi�es the viability of directly using the deep visual feature space
as common space. Moreover, the models described in this paper
have resulted in a winning entry in the Microso� Image Retrieval
Challenge at ACM MM 2015 and Video to Text Description task at
TRECVID 2016, which further shows the viability of our proposed
models.

Based on the current works, we consider the following directions
important for future research: 1) As humans, we usually focus on
speci�c regions of an image when looking at it. Hence, integrating
a�ention mechanism [35] into cross-media retrieval model is mean-
ingful. 2) As videos used in our experiments are short, we adopt
average pooling on video frames to obtain the video feature. How-
ever, it leads to losing some temporal clues in the video. Exploiting
temporal order of video frames is important for video-related re-
trieval. 3) According to our ongoing work, we observe that current
advanced image retrieval models are not good at address queries of
low visualness, and the majority of the real-user queries are of this
type. Addressing these types of queries will be a valuable topic for
future work.
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