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ABSTRACT

The rise of generative adversarial networks has boosted a vast in-
terest in the field of fashion image-to-image translation. However,
previous methods do not perform well in cross-category translation
tasks, e.g., translating jeans to skirts in fashion images. The translat-
ed skirts are easier to lose the detail texture of the jeans, and the gen-
erated legs or arms often look unnatural. In this paper, we propose a
novel approach, called DesignGAN, that utilizes the landmark guid-
ed attention and a similarity constraint mechanism to achieve fashion
cross-category translation. Moreover, we can achieve texture editing
on any customized input, which can even be used as an effective way
to empower fashion designers. Experiments on fashion datasets ver-
ify that DesignGAN is superior to other image-to-image translation
methods.

Index Terms— DesignGAN, Fashion Translation, Landmark
Attention, Texture Editing.

1. INTRODUCTION

Generative Adversarial Networks (GAN) [ 1] have shown impressive
results in image synthesis [2, 3, 4, 5] and video generation [0, 7, 8].
More recently, the image-to-image translation which aims to map
an image from a source domain to a target domain received con-
siderable attention in the computer vision community. However, it
requires paired images from each of the source and target domains,
which limits the training. Unsupervised approaches [9, 10, 11] over-
come this problem with cyclic losses which encourage the translated
domain to be faithfully reconstructed when mapped back to the orig-
inal domain. Due to the reduction of restrictions, the performance in
practical applications like semantic manipulation [12, 13, 14], super-
resolution [15, 16, 17], and domain adaptation[ 18, 19] has enhanced
by a large margin.

Previous methods [13, 20, 9, 21, 22] mainly involve the trans-
lation of textures (e.g., from summer to winter) or shapes [23]. We
found that they often fail on cross-category translation tasks, more
specifically, the task involves significant changes in shapes. Recent-
ly, Mo et al. [24] proposed the InstaGAN that can facilitate the shape
transformation (e.g., from jeans to skirts), which greatly promoted
this research filed. But the resulting skirts are easier to lose the tex-
ture details of jeans, and on the other hand, the synthesized texture
of legs or arms often looks unnatural, as shown in Fig.1.

To this end, we propose a novel approach that incorporates the
landmark guided attention and a similarity constraint mechanism to
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Fig. 1. Translation results of the prior work (CycleGAN[Y], Insta-
GAN [24]), and our proposed approach, DesignGAN.

improve cross-category fashion translation, based on the framework
of CycleGAN [9]. Inspired by the previous human image generation
works [25, 26], we utilize the predicted landmarks of both human
skeleton and clothes as the attention to enhance the discrimination a-
bility. To the best of our knowledge, we are the first ones who use the
predicted landmarks of both human skeleton and clothes as the atten-
tion to guide the fashion-related generation. Also, different from the
InstaGAN which requires a ground-truth mask, our approach learns
joint-mappings between two domains based on the landmark guided
regions.

On the other hand, we introduce a similarity constraint mech-
anism to control the texture similarity of both clothes and skin be-
tween the generated images and the input samples within the trans-
lated region. Benefiting from the landmark guided attention and the
similarity constraints mechanism, our method shows more impres-
sive results for clothes category translation tasks compared to previ-
ous methods (e.g., CycleGAN[Y], InstaGAN [24]).

Our approach can even customize the input texture when com-
plete a translation. Giving an original image and a specific texture
input, our approach can generate a translated clothes with target tex-
ture (e.g., cobble, dotted), which can not achieve by previous works
(e.g., InstaGAN [24]). It can even be used as an effective way to
empower fashion designers.

Our main contribution is three-fold: First, we propose a nov-
el network DesignGAN, which can translate the fashion category
guided by landmark attention. Second, we solve the problem that
losing the details of clothes texture and showing the unnatural legs
or arms after translation by introducing the texture similarity con-
straint mechanism. Finally, we can achieve texture editing on any
customized input, which can strengthen its applicability up to a high-
er level.
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Fig. 2. The framework of the proposed DesignGAN. We adopted the network architectures of CycleGAN [9] as the building blocks. During
the generation process, we added the landmark branch to predict the landmarks of both human skeleton and clothes in the input image z,
which can guide the segmentation of the original category region (a). As for the discriminator D, we introduce a similarity mechanism to
ensure the translation effect of both clothes and skin, achieved by the style loss and skin texture loss. Moreover, the landmark attention is

introduced to strengthen the discrimination power of the model.
2. TECHNICAL APPROACH

2.1. Problem Formulation

The goal of unsupervised translation we tackle is to learn mappings
across two image domains (X and Y') with unpaired samples. In
particular, our approach learns joint-mappings between category-
attached spaces (X x A and Y x B) based on the landmark guided
regions. More specifically, translating the concated feature maps of
the whole image (x € X)) and the category region (a € A) (e.g., the
region of jeans), as illustrated in Fig.2. A and B represent the origi-
nal and target category regions, respectively. On the other hand, the
predicted landmarks are applied as an attention mechanism, which
can further enhance its discrimination ability and conversely, im-
prove generation quality.

To solve the problems of unsimilar texture of clothes and un-
natural texture of the skin, we design a style loss and a skin loss
to constrain the similarity within the corresponding regions. Also,
the similarity constraint can be used to translate a customized input
texture.

2.2. DesignGAN Architecture

Fig.2 illustrates the framework of our approach based on the Cy-
cleGAN [9] architecture. We first extract individual features from
the original image x and landmark guided category region a (e.g.,
the region of jeans) using image feature extractor fox and category
feature extractor f¢ a, respectively. Then, we concatenate the image
feature and category features guided by landmarks. The concated
feature map is feed to the generator. We train two coupled genera-
tors Gxy: X X A—=Y xBandGyx:Y x B— X x A, where
Gxy translates the original data(z, a) to the target domain (y’,b’) ,
vice versa for Gy x.

On the other hand, our approach encodes both y and b (or 3y and
b’), and determines whether the pair is from the domain or not (i.e.,
is skirt or not in the example) with adversarial discriminators. We
also have two coupled discriminators Dy: Y x B — {Y, not Y}
and Dx: X x A — {X, not X}, where Dy determines if the data
(original (y,b) or translated (y’, b)) is in the target domain Y x B
or not, vice versa for Dx.

The various parts of the architecture (e.g., extractors, generators)
are not mandatory, which can be replaced by other networks that
have the same effect.

2.3. Landmark Attention

The landmark branch predicts the landmarks of both human and
clothes within the image simultaneously based on the HR-Net [29]
backbone, as illustrated in Fig.2. The prediction ability for the hu-
man skeleton is trained on COCO [30] dataset, while the ability for
clothes landmark is trained on Deepfashion2 [31] dataset. Note that
they use the same type of backbone, but they do not share the model.

We transform the landmark estimation task to predicting k
heatmaps, where each heatmap indicates the location confidence
of the k-th landmark. After extracting the feature map by the HR-
Net backbone, we use several groups of transposed convolution to
produce a high-resolution landmark heatmap with the same scale
as the input image and utilize a regressor to estimate the heatmaps
where the landmark positions are chosen. The mean squared error
loss function is applied for comparing the heatmaps between the
ground-truth and the predicted results.

We use the predicted human skeleton and clothes landmarks to
guide the segmentation of the category region (e.g., the jeans in
Fig.2), which is different from InstaGAN [24] that requires a ground-
truth mask as input. For instance, the collar region is surrounded
(i.e., segmented) by several human and clothes landmarks around
the neck. What’s more, the predicted landmarks can be applied to
the discrimination process as an attention mechanism to further en-
hance the training effect.

We introduce the landmark attention during the discrimination
process by making fIDY= fpy o fau, where fpy represents the ex-

tracted feature map of image y or y , fau represents the attention
map, and o stands for Hadamard product. By multiplicating with
the attention map, the critical features are strengthened, while irrel-
evant features are filtered out, via different weighted elements. For
instance, the landmarks around critical areas like the waistline and
ankle can guide the extraction of features, which makes these key
features have more possibility to retain. Thus, the discriminatory
power of the model can be strengthened.
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2.4. Loss Function

The goal of our work is cross-category fashion translation while
keeping the original contexts (e.g., the style of the clothes, the skin
of the legs). To this end, we both consider the domain loss, which
makes the generated outputs to follow the overall ‘look’ of the target
domain, and the style/skin loss, which make the outputs keep the
original texture of clothes/skin.

Following a similar scheme with our baseline model, CycleGAN
[9], we use the LSGAN [32] loss as the adversarial loss, and consider
both the cycle-consistency loss [33] and the identity mapping loss
[34] as rough constraints to keep the overall content of the original
image. We apply adversarial losses to both mapping functions. For
the mapping function G xy and its discriminator Dy , we express
the objective as:

Lrscan = ]E(y7b)diata [(DY (ya b) - 1)2]+

9 (H
E(%“)"Pdam [DY (GXY (‘I:’ a)) ]7
Leye = B a)vpgara [[1Gy x (Gxy (2,2)) — (2,8)[[1]+ @
E(yvb)diata [l ‘GXY (GYX (y7 b)) - (y7 b) | |1}7
'Cidt = E(y,b)diam, H |GXY (y7 b) - (y7 b) | |1]+ (3)

(@, a)[].
We call the three loss functions above domain losses, as illustrated in
figure 2. They achieve the overall structure of the translated clothes,
but lack of texture details. Thus, we design two pixel-wise L2 loss
functions: the style loss and the skin loss to penalizes the L2 differ-
ence between the RGB channels of the generated result and that of
the input texture.

Since the size of the category region changes during the transla-
tion (e.g., jeans—>skirt), the original region (a) is resized to the same
size as the translated one (b”). The style loss is defined as follow:

N 3
style = 7N ZZ Hp(a) J
n=1c=1

where N represents the number of pixels within the translated region
b’ (e.g., the region of skirt), 4 and j indicate the coordination of each
pixel. p(a) and p(b’) represents the value of channel ¢ within the
original region a and translated region b’, respectively. o stands for
Hadamard product. wg¢ye represents the weight map of style loss, in
which the weights gradually increases from the center of the region
b’ to the edge, because the edge area has more detail than the center
area.

E(mva)"’pdata [HGYX (CC, a) -

()i ll2 0 Wstyre, (@)

(d) pants — shorts
] dataset. (b-d) Results on clothing co-parsing (CCP) [

] dataset.

In order to make the skin texture of the legs or arms in the trans-
lated image %’ look more natural, we define a skin loss to constrain
the similarity between the generated skin region b’ and the original
skin region a,. For the generated skin of legs, our approach utilizes
the landmarks around the arms to obtain the original skin texture.
(vice versa for the generation of arms). For instance, in the trans-
lation from jeans to skirt, the newly generated leg texture refers to
the arm texture in the original image. Since the texture area obtained
from the landmarks is small and irregular in shape, we match the
closest one of the five pre-prepared regular skin textures, as the skin
texture region a, of the original image. The original skin region a,
is also resized to the same size as the output one b’,. The pixel-wise
L2 loss is defined as follow:

N 3
1 /
Lskin = N Z Z llp(as)i; — p(bs)

n=1c=1

ijll2 © Wskin, (5)

where N represents the number of pixels within the generated skin
region b, (e.g., the skin texture of legs), i and j indicate the coordi-
nation of each pixel. p(a;) or p(b}) represents the value of channel ¢
within the original skin region a, or generated skin region b,. wskin
represents the weight map of skin loss, in which the weights increase
horizontally from the center of the human skeleton (i.e., the skeleton
of legs or arms) to the edge. In this way, the texture of skin looks
more stereoscopic in the generated image.
Finally, the total loss of DesignGAN becomes:

Lan =Lrscan + AeyeLeye + NiatLiat+

(©6)
)\stylecstyle + )\skinﬁskiny

where Acyc, Aide, Astyle, Askin indicate the weight for each ter-
m, which are set as (1,3,5,5) by default.

2.5. Customized Texture

In addition, we expand the previous task to customized texture in-
put, which provides meaningful complement to the existing fashion
translation field. Instead of the texture of original clothes, we con-
straint the similarity between the customized texture and the trans-
lated one.

More specifically, giving an original image z, the customized
texture (e.g., a cobble texture) is pasted into the corresponding cate-
gory region a (e.g., the region of jeans) guided by landmarks. Then,
the feature extractor encodes the entire original image « and the jean-
s region a with the custom texture attached to it. The concated fea-
ture map is feed to the generator. After that, the translation of the
clothes is also achieved by the domain loss, and the similarity of
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Fig. 4. The translation results with texture editing based on cobble,
dotted, and flower inputs.

the texture is constrained by style loss and skin loss between corre-
sponding regions. Finally, we can obtain an image 3’ with a custom
input texture in the translation region b’ (i.e., the region of skirt).

3. EXPERIMENT

3.1. Implementations Details

For different groups of translation, we sample two classes of fashion
images from clothing co-parsing (CCP) [28] or multi-human pars-
ing (MHP) [27]dataset which are also used by previous method.
In our experiment, we evaluate our approach on four groups of
translation, including jeans—skirt, skirt—jeans, shorts—pants, and
pants—shorts. For each set of transitions, we selected 1500 images
on average as training data. We set the classification score as our
evaluation metrics, which is also used by previous works (e.g., In-
staGAN [24]). More specifically, the classification score is defined
as the ratio of images predicted as the target class by a pretrained
ImageNet [35] classifier for each domain.

For the training setting of DesignGAN, we followed the Insta-
GAN [24] that resizing the input images to 300 <200 (height x width)
for CCP [28] dataset and 240 160 for MHP [27] dataset, respective-
ly. We used Adam optimizer with the batchsize of 2. The training
is completed with 8 GPUs in parallel. The initial learning rates of
generator and discriminator are set as 0.0005 and 0.0002 for the first
100 epochs, and linearly decayed to zero for the next 100 epochs.

3.2. Cross-Category Translation Results

We compare our model with InstaGAN [24], and CycleGAN [Y], as
presented in Fig.3. CycleGAN method hardly changes the shape of
the clothes and fails in all samples. InstaGAN method can gener-
ate reasonable shapes of the target categories. However, the trans-
lated clothes are easier to lose the details of texture. This issue is
especially obvious in the case of skirt—jeans, where colored skirt-
s are converted into black jeans. In addition, benefiting from our
landmark attention mechanism, the generation effect around the key
points (e.g., the waistline) of the clothes is better than the result of
InstaGAN without any focus.

On the other hand, for the CycleGAN and InstaGAN, the result-
ing texture of legs or arms often looks unnatural, because they do
not take into account the similarity constraints of the skin. Through
the landmark branch, we can obtain the skin texture around the hu-
man arms or legs area, and utilize the skin loss as a constraint for the
discriminator, to make the texture approximate the natural skin.

We quantitatively evaluate the performance of our approach, Cy-
cleGAN baseline, and InstaGAN. Table 1 shows the evaluation re-
sults for different translation categories. Our approach outperforms
CycleGAN and InstaGAN in all experiments, which demonstrates
better effectiveness of the proposed model.

1971

Table 1. Evaluation results for different translations on CCP [28]
dataset, including jeans—skirt, skirt—jeans, shorts—pants, and
pants—shorts. We set the classification score as the metrics.

Category skirt ~ jeans  pants  shorts
Real 0.888 0.946 0.984 0.720
CycleGAN 0.371 0483 0.524 0.085
InstaGAN 0.600 0.540 0.768 0.232
DesignGAN | 0.653 0.587 0.821 0.313
Table 2. Results for our ablation study on CCP [28] dataset.
Category skirt ~ jeans pants shorts
No Attention | 0.631 0.562 0.798 0.288
No Style Loss | 0.627 0.554 0.781 0.261
No Skin Loss | 0.642 0.569 0.813  0.308
Complete 0.653 0.587 0.821 0.313

3.3. Ablation Study

In this section, we perform an in-depth study of each component in
our proposed model, as illustrated in Table 2. Our approach is com-
posed of the CycleGAN architecture, the landmark attention branch,
the style loss, and skin loss. We individually remove each compo-
nent from the complete model. It can be found that the evaluation
results drops obviously in every translation task when we remove
each component. In particular, when the style loss is removed, the
accuracy drops the most. In conclusion, the above ablation study
demonstrates that each part plays a key role in the translation of the
image, which further proves that the design of our model is reason-
able and effective.

3.4. Texture Editing

Another contribution of our approach is the ability to edit the texture
during the translation of the fashion category. Through the texture
similarity constraint mechanism, we can not only constrain the sim-
ilarity between the original clothes and the generated ones but also
provide the generated clothes with specific textures like the flower,
dotted, cobble, etc, as shown in Fig.4. The texture input for each cor-
responding result is shown in the upper-left box. Compared to the
single translation results of the previous method, our method pro-
vides users with a richer choice.

Texture editing has a great application potential for fashion-
related generation, which can incorporate any custom texture ele-
ments into the generated costume. It can even be an effective and
convenient way to empower fashion designers.

4. CONCLUSION

Our work introduces a novel approach incorporating the attention
guided by landmarks for image-to-image translation. The compara-
tive evaluation demonstrates the effectiveness of our approach on the
cross-category tasks. We solved the problem that losing the details
of clothes texture after the translation by texture similarity constraint
mechanism. Besides, we obtain the skin texture around the arms or
legs area via landmarks and utilize the skin loss to make the texture
approximate the natural skin. What’s more, the predicted landmark-
s can guide the training process as attention, which can further en-
hance the discrimination ability. Also, the proposed DesignGAN can
achieve texture editing based on a specific customized input, which
can strengthen its applicability up to a higher level.
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