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Abstract

This paper attacks the challenging problem of zero-

example video retrieval. In such a retrieval paradigm, an

end user searches for unlabeled videos by ad-hoc queries

described in natural language text with no visual example

provided. Given videos as sequences of frames and queries

as sequences of words, an effective sequence-to-sequence

cross-modal matching is required. The majority of exist-

ing methods are concept based, extracting relevant con-

cepts from queries and videos and accordingly establish-

ing associations between the two modalities. In contrast,

this paper takes a concept-free approach, proposing a dual

deep encoding network that encodes videos and queries into

powerful dense representations of their own. Dual encod-

ing is conceptually simple, practically effective and end-

to-end. As experiments on three benchmarks, i.e. MSR-

VTT, TRECVID 2016 and 2017 Ad-hoc Video Search show,

the proposed solution establishes a new state-of-the-art for

zero-example video retrieval.

1. Introduction

This paper targets at zero-example video retrieval, where

a query is described in natural language text and no visual

example is given. The topic is fundamentally interesting as

it requires establishing proper associations between visual

and linguistic information presented in temporal order.

Zero-example video retrieval attracts initial attention

in the form of zero-example multimedia event detection,

where the goal is to retrieve video shots showing specific

events such as parking a vehicle, dog show and birthday
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Figure 1. Showcase of zero-example video retrieval with and

without the proposed encoding. The ✖ symbol indicates encod-

ing by mean pooling. Numbers in the third column are the rank of

the relevant video returned by retrieval models subject to specific

query / video encoding strategies. The retrieval model with dual

encoding successfully answers this complex query.

party, but with no training videos provided [3, 6, 9, 12, 20,

31]. All these methods are concept based, i.e. describing

the video content by automatically detected concepts, which

are used to match with a target event. Such a concept-based

tradition continues. For the NIST TRECVID challenge of

zero-example video retrieval [2], we observe that the top

performers are mostly concept based [15, 22, 25, 30]. How-

ever, the concept-based paradigm faces a number of dif-

ficulties including how to specify a set of concepts, how

to train good classifiers for these concepts, and more cru-
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cially how to select relevant and detectable concepts for

both video and query representation [20]. This paper dif-

fers from these works as we aim for a concept-free method

that learns directly common semantic embeddings for both

videos and queries.

Good efforts have been made for learning joint embed-

dings of the two modalities for zero-example video retrieval

[24, 34]. In [34], a query sentence is vectorized by a recur-

sive neural network, while [24] vectorizes a given sentence

by a recurrent neural network. In both works a specific

video is vectorized by mean pooling of visual features of its

frames. Different from [24,34], we propose dual multi-level

encoding for both videos and queries in advance to common

space learning. As exemplified in Figure 1, the new encod-

ing strategy is crucial for describing complex queries and

video content.

Our hypothesis is that a given video / query has to be first

encoded into a powerful representation of its own. We con-

sider such a decomposition crucial as it allows us to design

an encoding network that jointly exploits multiple encod-

ing strategies including mean pooling, recurrent neural net-

works and convolutional networks. In our design, the out-

put of a specific encoding block is not only used as input of

a follow-up encoding block, but also re-used via skip con-

nections to contribute to the final output. It generates new,

higher-level features progressively. These features, gener-

ated at distinct levels, are powerful and complementary to

each other, allowing us to obtain effective video (and sen-

tence) representations by very simple concatenation. More-

over, dual encoding is orthogonal to common space learn-

ing, allowing us to flexibly embrace state-of-the-art com-

mon space learning algorithms.

In sum, this paper makes the following contributions.

•We propose multi-level encodings of video and text in ad-

vance to learning shared representations for the two modal-

ities. As such, the encodings are not meant for direct video-

text matching. This is conceptually different from existing

works that tackle cross-modality matching as a whole.

• We design a novel dual network that encodes an input,

let it be a query sentence or a video, in a similar manner.

By jointly exploiting multi-level encodings, the network ex-

plicitly and progressively learns to represent global, local

and temporal patterns in videos and sentences. While being

orthogonal to common space learning, the entire model is

trained in an end-to-end manner.

• Dual encoding, combined with state-of-the-art com-

mon space learning [8], establishes a new state-

of-the-art for zero-example video retrieval, as sup-

ported by its superior performance on three challeng-

ing benchmarks. Code and data are available at

https://github.com/danieljf24/dual encoding.

2. Related Work

Since 2016 the TRECVID starts a new challenge for

zero-example video retrieval, known as Ad-hoc Video

Search (AVS) [2]. The majority of the top ranked solutions

for this challenge depend on visual concept classifiers to

describe video content and linguistic rules to detect concept

in textual queries [15, 21, 22, 25, 30]. For instance, [21, 22]

utilize multiple pre-trained Convolutional Neural Network

(CNN) models to detect main objects and scenes in video

frames. As for query representation, the authors design rel-

atively complex linguistic rules to extract relevant concepts

from a given query. Ueki et al. [30] come with a much larger

concept bank consisting of more than 50k concepts. In ad-

dition to pre-trained CNN models, they train SVM classi-

fiers to automatically annotate the video content. We argue

that such a concept-based paradigm has a fundamental dis-

advantage. That is, it is very difficult, if not impossible, to

describe the rich sequential information within both video

and query using a few selected concepts.

With big advances of deep learning in natural language

processing and computer vision research, we observe an in-

creased use of such techniques for video retrieval [7,24,34,

36, 37]. By directly encoding videos and text into a com-

mon space, these methods are concept free. For video en-

coding, a typical approach is to first extract visual features

from video frames by pre-trained CNN models, and sub-

sequently aggregate the frame-level features into a video-

level feature. To that end, mean pooling is the de facto

choice [7,24,34]. To explicitly model the temporal informa-

tion, Yu et al. [37] use Long Short-Term Memory (LSTM),

where frame-level features are sequentially fed into LSTM,

and the hidden vector at the last step is used as the video

feature. CNN is exploited in [36]. None of the above works

considers more than one video encoding strategy.

For query sentence encoding, while bag-of-words re-

mains popular [10], deep networks are in increasing use.

Recursive neural networks are investigated in [34] for vec-

torizing subject-verb-object triplets extracted from a given

sentence. Variants of recurrent neural networks are being

exploited, see the usage of LSTM, bidirectional LSTM, and

Gated Recurrent Unit (GRU) in [37], [36], and [24], respec-

tively. To the best of our knowledge, [7] is the only work

looking to a joint use of multiple sentence encoding strate-

gies including bag-of-words, word2vec and GRU. However,

as aforementioned, that work simply uses mean pooling for

video encoding.

To the best of our knowledge, this paper is the first work

for explicitly and progressively exploiting global, local and

temporal patterns in both videos and sentences.
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Figure 2. A conceptual diagram of the proposed dual encoding network for zero-example video retrieval. Given a video v and a

sentence s, the network performs in parallel multi-level encodings, i.e. mean pooling, biGRU and biGRU-CNN, eventually representing

the two input by two combined vectors φ(v) and φ(s), respectively. The vectors are later projected into a common space, which we

learn using VSE++ [8], for video-text similarity computation. Note that the length of the bag-of-words vector f
(1)
s is equal to the size

of the training vocabulary, which is 7,807 when we train on MSR-VTT. Once the network is trained, encoding at each side is performed

independently, meaning we can process large-scale videos offline and answer ad-hoc queries on the fly.

3. The Dual Encoding Network

Given a video v and a sentence s, we propose to encode

them in a dual manner, denoted as φ(v) and φ(s), in ad-

vance to common space learning. As illustrated in Figure 2,

multi-level encodings are performed for each modality. The

encoding results are combined to describe the two modali-

ties in a coarse-to-fine fashion. Both video and sentence are

essentially a sequence of items, let it be frames or words.

Such a property allows us to design a dual encoding net-

work to handle the two distinct modalities. In what follows

we first depict the network at the video side. We then spec-

ify choices that are unique to text.

3.1. Videoside Multilevel Encoding

For a given video, we extract uniformly a sequence of

n frames with a pre-specified interval of 0.5 second. Per

frame we extract deep features using a pretrained ImageNet

CNN, as commonly used for video content analysis [10,21,

34]. Consequently, the video is described by a sequence

of feature vectors {v1, v2, . . . , vn}, where vt indicates the

deep feature vector of the t-th frame. Notice that 3D CNNs

[29] can also be used for feature extraction when treating

segments of frames as individual items.

3.1.1 Level 1. Global Encoding by Mean Pooling

According to our literature review, mean pooling, which

represents a video by simply averaging the features of

its frames, is arguably the most popular choice for zero-

example video retrieval. By definition, mean pooling cap-

tures visual patterns that repeatedly present in the video

content. These patterns tend to be global. We use v̄v to

indicate the encoding result at this level,

f (1)
v =

1

n

n∑

t=1

vt. (1)

3.1.2 Level 2. Temporal-Aware Encoding by biGRU

Bi-directional recurrent neural network [27] is known to

be effective for making use of both past and future con-

textual information of a given sequence. We hypothesize

that such a network is also effective for modeling the video

temporal information. We adopt a bidirectional GRU (bi-

GRU) [5], which has less parameters than the bidirectional

LSTM and thus requires less amounts of training data. A

biGRU consists of two separated GRU layers, i.e. a forward

GRU and a backward GRU. The forward GRU is used to

encode frame features in normal order, while the backward

9348



GRU encodes frame features in reverse order. Let
−→
h t and

←−
h t be their corresponding hidden states at a specific time

step t = 1, . . . , n. The hidden states are generated as

−→
h t =

−−−→
GRU(vt,

−→
h t−1),

←−
h t =

←−−−
GRU(vn+1−t,

←−
h t−1),

(2)

where
−−−→
GRU and

←−−−
GRU indicate the forward and backward

GRUs, with past information carried by
−→
h t−1 and

−→
h t−1,

respectively. Concatenating
−→
ht and

←−
ht , we obtain the bi-

GRU output ht = [
−→
h t,
←−
h t]. The size of the hidden vectors

in the forward and backward GRUs is empirically set to 512.

Accordingly, the size of ht is 1,024. Putting all the output

together, we obtain a feature map H = {h1, h2, ..., hn},
with a size of 1, 024 × n. The biGRU based encoding, de-

noted h̄v , is obtained by applying mean pooling on H along

the row dimension, that is

f (2)
v =

1

n

n∑

t=1

ht. (3)

3.1.3 Level 3. Local-Enhanced Encoding by

biGRU-CNN

The previous layer treats the output of biGRU at each step

equally. To enhance local patterns that help discriminate

between videos of subtle difference, we build convolutional

networks on top of biGRU. In particular, we adapt 1-d CNN

originally developed for sentence classification [13].

The input of our CNN is the feature map H generated

by the previous biGRU module. Let Conv1dk,r be a 1-d

convolutional block that contains r = 512 filters of size k,

with k ≥ 2. Feeding H , after zero padding, into Conv1dk,r
produces a n×r feature map. Non-linearity is introduced by

applying the ReLU activation function on the feature map.

As n varies for videos, we further apply max pooling to

compress the feature map to a vector ck of fixed length r.

More formally we express the above process as

ck = max-pooling(ReLU(Conv1dk,r(H))). (4)

A filter with k = 2 allows two adjacent rows in H to

interact with each other, while a filter of larger k means

more adjacent rows are exploited simultaneously. In order

to generate a multi-scale representation, we deploy multiple

1-d convolutional blocks with k = 2, 3, 4, 5. Their output is

concatenated to form the biGRU-CNN based encoding, i.e.

f (3)
v = [c2, c3, c4, c5]. (5)

As f
(1)
v , f

(2)
v , f

(3)
v are obtained sequentially at different

levels by specific encoding strategies, we consider it reason-

able to presume that the three encoding results are comple-

mentary to each other, with some redundancy. Hence, we

obtain multi-level encoding of the input video by concate-

nating the output from all the three levels, namely

φ(v) = [f (1)
v , f (2)

v , f (3)
v ]. (6)

In fact, this concatenation operation, while being simple, is

a common practice for feature combination [11, 38].

3.2. Textside Multilevel Encoding

The above encoding network, after minor modification,

is also applicable for text.

Given a sentence s of length m, we represent each of

its words by a one-hot vector. Accordingly, a sequence of

one-hot vectors {w1, w2, . . . , wm} is generated, where wt

indicates the vector of the t-th word. Global encoding f
(1)
s

is obtained by averaging all the individual vectors in the

sequence. This amounts to the classical bag-of-words rep-

resentation.

For biGRU based encoding, each word is first converted

to a dense vector by multiplying its one-hot vector with

a word embedding matrix. We initialize the matrix us-

ing a word2vec [23] model provided by [7], which trained

word2vec on English tags of 30 million Flickr images. The

rest is mostly identical to the video counterpart. We de-

note the biGRU based encoding of the sentence as f
(2)
s .

Similarly, we have the biGRU-CNN based encoding of

the sentence as f
(3)
s . Here, we utilize three 1-d convolu-

tional blocks with k = 2, 3, 4. Multi-level encoding of the

sentence is obtained by concatenating the encoding results

from all the three levels in the dual network, i.e.

φ(s) = [f (1)
s , f (2)

s , f (3)
s ]. (7)

As φ(v) and φ(s) have not been correlated, they are not

directly comparable. For video-text similarity computation,

the vectors need to be projected into a common space, the

learning algorithm for which will be presented next.

4. Common Space Learning

Among many choices of common space learning algo-

rithms we choose VSE++ [8] for two reasons. First, it is the

state-of-the-art in its original context of image-text retrieval,

and more recently found to be effective also in the video

domain [24]. Second, its source code is publicly available1,

which greatly facilitates our exploitation of the algorithm.

Given the encoded video vector φ(v) and sentence vec-

tor φ(s), we project them into a common space by affine

transformation. From the neural network viewpoint, affine

transformation is essentially a Fully Connected (FC) layer.

On the basis of [8], we additionally use a Batch Normal-

ization (BN) layer after the FC layer, as we find this trick

beneficial. Putting everything together, we obtain the video

1https://github.com/fartashf/vsepp
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feature vector f(v) and sentence feature vector f(s) in the

common space as

f(v) = BN(Wvφ(v) + bv),
f(s) = BN(Wsφ(s) + bs),

(8)

where Wv and Ws parameterize the FC layers on each side,

with bv and bs as bias terms.

The dual encoding network and the common space learn-

ing network are trained together in an end-to-end manner

except that image convnets used for extracting video fea-

tures are pre-trained and fixed. Let θ be all the trainable

parameters. The video-text similarity subject to θ, denoted

by Sθ(v, s), is computed using cosine similarity2 between

f(v) and f(s).
We use the improved marginal ranking loss [8], which

penalizes the model according to the hardest negative ex-

amples. Concretely, the loss L(v, s; θ) for a relevant video-

sentence pair is defined as

L(v, s; θ) = max(0, α+ Sθ(v, s
−)− Sθ(v, s))

+max(0, α+ Sθ(v
−, s)− Sθ(v, s)),

(9)

where α is the margin constant, while s− and v− respec-

tively indicate a negative sentence sample for v and a nega-

tive video sample for s. The two negatives are not randomly

sampled. Instead, the most similar yet negative sentence

and video in the current mini-batch are chosen. The entire

network is trained towards minimizing this loss.

5. Evaluation

We conduct five experiments. First, following [24],

we perform text-to-video and video-to-text retrieval on the

MSR-VTT dataset [33]. We then evaluate the proposed

method in the context of the TRECVID Ad-hoc Video

Search task of the last two years [1,2]. Further, we evaluate

on MSVD [4] for cross-dataset generalization and MPII-

MD [26] for cross-domain generalization. While focus-

ing on video retrieval, we provide an additional experiment

on Flickr30k [35] and MS-COCO [19] to investigate if the

VSE++ model [8], the state-of-the-art for image-text re-

trieval, can be improved by replacing its GRU based en-

coding by the proposed encoding at the text side. Lastly, for

ad-hoc video retrieval where a user submits queries on the

fly, retrieval speed matters. So an efficiency test is provided.

Before proceeding to the experiments, we detail our im-

plementations. We use PyTorch (http://pytorch.org) as our

deep learning environment. For sentence preprocessing, we

first convert all words to the lowercase and then replace

words that occurring less than five times in the training set

with a special token. We empirically set the size of the

2In our preliminary experiment, we also tried the Euclidean distance,

but found it less effective.

learned common space to 2,048, and the margin parame-

ter α to 0.2. We use SGD with Adam [14]. The mini-batch

size is 128. With an initial learning rate of 0.0001, we take

an adjustment schedule similar to [7]. That is, once the val-

idation loss does not decrease in three consecutive epochs,

we divide the learning rate by 2. Early stop occurs if the

validation performance does not improve in ten consecutive

epochs. The maximal number of epochs is 50.

5.1. Experiments on MSRVTT

Setup. The MSR-VTT dataset [33], originally devel-

oped for video captioning, consists of 10k web video clips

and 200k natural sentences describing the visual content of

the clips. The average number of sentences per clip is 20.

We use the official data partition, i.e. 6,513 clips for train-

ing, 497 clips for validation, and the remaining 2,990 clips

for testing.

For method comparison, we consider [24], the first work

reporting video retrieval performance on MSR-VTT. A

more recent work [36] also experiments with MSR-VTT,

but uses a non-public subset, making its results not compa-

rable. We include W2VV [7], another state-of-the-art model

with code available3. W2VV uses the Mean Square Error

(MSE) loss. So for a fair comparison, we adapt the model

by substituting the improved marginal ranking loss for MSE

and train it from scratch. We term this variant as W2VVimrl.

The same 2,048-dim ResNet-152 feature as [24] is used.

We report rank-based performance metrics, namely

R@K (K = 1, 5, 10), Median rank (Med r) and mean Aver-

age Precision (mAP). R@K is the percentage of test queries

for which at least one relevant item is found among the top-

K retrieved results. Med r is the median rank of the first

relevant item in the search results. Higher R@K, mAP and

lower Med r mean better performance. For overall compar-

ison, we report the sum of all recalls. Note that for text-

to-video retrieval, each test sentence is associated with one

relevant video, while for video-to-text retrieval, each test

video is associated with 20 relevant sentences. So the latter

will have better performance scores.

Comparison with the State-of-the-art. Table 1 shows

the performance on MSR-VTT. Though our goal is zero-

example video retrieval, which corresponds to text-to-video

retrieval in the table, video-to-text retrieval is also included

for completeness. While [7] is less effective than [24], let-

ting the former use a similar loss function as the latter brings

in a considerable performance gain, with the sum of recalls

increased from 90.3 to 132.1. The result suggests the impor-

tance of assessing different video / text encoding strategies

within the same common space learning framework. The

proposed method performs the best.

Ablation Study. To exam the usefulness of each com-

ponent in the dual encoding network, we conduct an ab-

3https://github.com/danieljf24/w2vv
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Table 1. State-of-the-art on MSR-VTT. Larger R@{1,5,10}, mAP and smaller Med r indicate better performance. Methods sorted in

ascending order in terms of their overall performance. The proposed method performs the best.

Method
Text-to-Video Retrieval Video-to-Text Retrieval

Sum of Recalls

R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

W2VV [7] 1.8 7.0 10.9 193 0.052 9.2 25.4 36.0 24 0.050 90.3

Mithun et al. [24] 5.8 17.6 25.2 61 - 10.5 26.7 35.9 25 - 121.7

W2VVimrl 6.1 18.7 27.5 45 0.131 11.8 28.9 39.1 21 0.058 132.1

Dual encoding 7.7 22.0 31.8 32 0.155 13.0 30.8 43.3 15 0.065 148.6

Table 2. Ablation study on MSR-VTT. The overall performance, as indicated by Sum of Recalls, goes up as more encoding layers are

added. Dual encoding exploiting all the three levels is the best.

Encoding strategy
Text-to-Video Retrieval Video-to-Text Retrieval

Sum of Recalls

R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Level 1 (Mean pooling) 6.4 18.8 27.3 47 0.132 11.5 27.7 38.2 22 0.054 129.9

Level 2 (biGRU) 6.3 19.4 28.5 38 0.136 10.1 26.8 37.7 20 0.057 128.8

Level 3 (biGRU-CNN) 7.3 21.5 31.2 32 0.150 10.6 27.3 38.5 20 0.061 136.4

Level 1 + 2 6.9 20.4 29.1 41 0.142 11.6 29.6 40.7 18 0.058 138.3

Level 1 + 3 7.5 21.6 31.2 33 0.151 11.9 30.5 41.7 16 0.062 144.4

Level 2 + 3 7.6 22.4 32.2 31 0.155 11.9 30.9 42.7 16 0.066 147.7

Level 1 + 2 + 3 7.7 22.0 31.8 32 0.155 13.0 30.8 43.3 15 0.065 148.6

lation study as follows. Given varied combinations of the

components, seven models are trained. Table 2 summarizes

the choices of video and text encodings and the correspond-

ing performance. Among the individual encoding levels,

biGRU-CNN, which builds CNN on top of the output of bi-

GRU turns out to be the most effective. As more encoding

layers are included, the overall performance goes up. For

the last four models which combines output from previous

layers, they all outperform the first three models. This sug-

gests that different layers are complementary to each other.

The full multi-level encoding setup, i.e. Level 1 +2 + 3 in

Table 2, is the best.

We also investigate single-side encoding, that is, video-

side multi-level encoding with mean pooling on the text side

and text-side multi-level encoding with mean pooling on the

video side. These two strategies obtain Sum of Recalls of

143.6 and 137.1, respectively. The lower scores justify the

necessity of dual encoding. The result also suggests that

video-side encoding is more beneficial.

5.2. Experiments on TRECVID

Setup. We evaluate dual encoding in the TRECVID AVS

task [1, 2], which provides the largest test bed for zero-

example video retrieval to this date. The test collection,

called IACC.3, contains 4,593 Internet Archive videos with

duration ranging from 6.5 min to 9.5 min and a mean du-

ration of almost 7.8 min. Shot boundary detection results

in 335,944 shots in total. Given an ad-hoc query, e.g. Find

shots of military personnel interacting with protesters, the

task is to return for the query a list of 1,000 shots from the

Table 3. State-of-the-art on TRECVID 2016.

Method infAP

Top-3 TRECVID finalists:

Le et al. [15] 0.054

Markatopoulou et al. [22] 0.051

Liang et al. [18] 0.040

Literature methods:

Habibian et al. [10] 0.087

Markatopoulou et al. [21] 0.064

W2VVimrl 0.132

Dual encoding 0.159

Table 4. State-of-the-art on TRECVID 2017.

Method infAP

Top-3 TRECVID finalists:

Snoek et al. [28] 0.206

Ueki et al. [30] 0.159

Nguyen et al. [25] 0.120

Literature methods:

Habibian et al. [10] 0.150

W2VVimrl 0.165

Dual encoding 0.208

test collection ranked according to their likelihood of con-

taining the given query. Per year TRECVID specifies 30

distinct queries of varied complexity.

As TRECVID does not specify training data for the AVS
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task, we train the dual encoding network using the joint col-

lection of MSR-VTT and the TGIF [17], which contains

100K animated GIFs and 120K sentences describing visual

content of the GIFs. Although animated GIFs are a very dif-

ferent domain, TGIF was constructed in a way to resemble

user-generated video clips, e.g. with cartoon, static, and tex-

tual content removed. For IACC.3, MSR-VTT and TGIF,

we use frame-level CNN features provided by [16], where

the authors use ResNeXt-101 [32] trained on the full Ima-

geNet collection for feature extraction.

For method comparison, we include the top 3 entries of

each year, i.e. [15,18,22] for 2016 and [25,28,30] for 2017.

Besides we include publications that report performance on

the tasks, i.e. [10, 21], to the best of our knowledge. As

noted in our literature review, most of the methods are con-

cept based. Notice that visual features and training data

used by these methods vary, meaning the comparison and

consequently conclusions drawn from this comparison is at

a system level. So for a more conclusive comparison, we

re-train W2VVimrl using the same joint dataset and the same

ResNeXt-101 feature.

We report inferred Average Precision (infAP), the offi-

cial performance metric used by the TRECVID AVS task.

The overall performance is measured by averaging infAP

scores over the queries.

Comparison with the State-of-the-art Table 3 and

4 show the performance of different methods on the

TRECVID 2016 and 2017 AVS tasks, respectively. The

proposed method again performs the best, with infAP of

0.159 and 0.208. While [28] has a close infAP of 0.206 on

the TRECVID 2017 task, their solution ensembles ten mod-

els. Their best single model, i.e. [10] which uses the same

ResNeXt-101 feature, has a lower infAP of 0.150. Given

the same training data and feature, the proposed method

outperforms W2VVimrl as well. Table 5 shows the influence

of distinct training data. The above results again justify the

effectiveness of dual encoding.

Note that the TRECVID ground truth is partially avail-

able at the shot-level. The task organizers employ a pooling

strategy to collect the ground truth, i.e. a pool of candidate

shots are formed by collecting the top-1000 shots from each

submission and a random subset is selected for manual ver-

ification. The ground truth thus favors official participants.

As the top ranked items found by our method can be outside

of the subset, infAP scores of our method is likely to be un-

derestimated. Some qualitative results are show in Fig. 3.

5.3. Experiments on MSVD and MPIIMD

Setup. We evaluate on MSVD [4] and MPII-MP [26],

two other popular video sets. Note that MSR-VTT is built

in a similar vein to MSVD , but in a larger scale. So we as-

sess the models previously trained on MSR-VTT using the

MSVD test set. MPII-MD, as a movie description dataset,

Table 5. Performance of our model trained on distinct data for

the TRECVID AVS benchmarks. Performance metric: infAP.

Training data TRECVID 2016 TRECVID 2017

MSR-VTT 0.140 0.179

TGIF 0.092 0.199

MSR-VTT + TGIF 0.159 0.208

Table 6. Performance of zero-example video retrieval, mea-

sured by mAP. Our proposed method is the best.

Model MSVD MPII-MD

W2VV 0.100 0.008

W2VVimrl 0.230 0.030

VSE++ 0.218 0.022

Dual Encoding 0.232 0.037

Table 7. Performance of image-text retrieval on Flickr30k and

MSCOCO. The proposed multi-level encoding is beneficial for

the VSE++ model [8].

Method
Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

On Flickr30k

VSE++ 23.1 49.2 60.7 31.9 58.4 68.0

VSE++, multi-level encoding 24.7 52.3 65.1 35.1 62.2 71.3

On MSCOCO

VSE++ 33.7 68.8 81.0 43.6 74.8 84.6

VSE++, multi-level encoding 34.8 69.6 82.6 46.7 76.2 85.8

is unique. So we re-train and evaluate all the models on this

dataset with its official data split. The ResNeXt-101 feature

is used.

Results. As Table 6 shows, our model again performs

the best in the cross-dataset scenario. Our model is also

the most effective on MPII-MP. See Fig. 4 for qualitative

results of zero-example movie retrieval.

5.4. Experiments on Flickr30K and MSCOCO

Setup. We investigate if the VSE++ model [8] can be im-

proved in its original context of image-text retrieval, when

replacing its textual encoding module, which is a GRU, by

the proposed multi-level encoding module. To that end, we

fix all other choices, adopting the exact evaluation proto-

col of [8]. That is, we use the same data split, where the

training / validation / test test has 30,000 / 1,000 / 1,000 im-

ages for Flickr30K, and 82,783 / 5,000 / 5,000 images for

MSCOCO. We also use the same VGGNet feature provided

by [8]. Performance of R@1, R@5 and R@10 are reported.

On MSCOCO, the results are reported by averaging over 5

folds of 1,000 test images.

Results. Table 7 shows the performance of image-text

retrieval on Flickr30k and MSCOCO. Integrating text-side

multi-level encoding into VSE++ brings improvements on

both datasets. The results suggest that the proposed text-
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Query 537: one or more people swimming in a swimming pool

1

4

3

6

2

5

   

   
Query 559: a man and woman inside a car

1

4

3

6

2

5

 ×
Figure 3. Top six shots retrieved from the IACC.3 collection (of 335k shots) with respect to four queries in the TRECVID 2017

AVS task. Dual encoding is used. Videos without green or red marks are unlabeled. For query #559, the second, third and fifth shots are

unlabeled but seem to be relevant to the query. The fourth shot is incorrect, as our video retrieval model fails to recognize that the man is

in fact outside a car.

Query sentence: They wrap their arms around each other (AP=0.25)

Ground truth Top-5 shots retrieved from the MPII-MD test set by our model

Query sentence: In a restaurant,Someone sits at a table with the guy (AP=0.031)

Ground truth Top-5 shots retrieved from the MPII-MD test set by our model

Figure 4. Movie retrieval by sentence on MPII-MD. The top re-

trieved shots, though not being ground truth, appear to be correct.

side multi-level encoding is also beneficial for VSE++ in its

original context.

5.5. Efficiency Test

Recall that the dual encoding network is designed to rep-

resent both videos and sentences into a common space re-

spectively. Once the network is trained, representing them

in the common space can be performed independently. This

means we can process large-scale videos offline and answer

ad-hoc queries on the fly. Specifically, given a natural-

sentence query, it takes approximately 0.14 second to re-

trieve videos from the largest IACC.3 dataset, which con-

sists of 335,944 videos. The performance is tested on a nor-

mal computer with 64G RAM and a GTX 1080TI GPU. The

retrieval speed is adequate for instant response.

6. Summary and Conclusions

For zero-example video retrieval this paper proposes

dual encoding. By jointly exploiting multiple encoding

strategies at different levels, the proposed dual encoding

network encodes both videos and natural language queries

into powerful dense representations. Followed by common

space learning, these representations can be transformed

to perform sequence-to-sequence cross-modal matching ef-

fectively. Extensive experiments on three benchmarks, i.e.

MSR-VTT, TRECVID 2016 and 2017 AVS tasks, support

the following conclusions. Among the three levels of en-

coding, biGRU-CNN that builds a 1-d convolutional net-

work on top of bidirectional GRU is the most effective when

used alone. Video-side multi-level encoding is more benefi-

cial when compared with its text-side counterpart. For state-

of-the-art performance, we recommend dual encoding. We

believe the proposed method also has a potential for other

tasks such as video question answering that require effective

video / text encoding.
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