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Cross-modal retrieval is an important but challenging research task in the multimedia community. Most
existing works of this task are supervised, which typically train models on a large number of aligned
image-text/video-text pairs, making an assumption that training and testing data are drawn from the
same distribution. If this assumption does not hold, traditional cross-modal retrieval methods may expe-
rience a performance drop at the evaluation. In this paper, we introduce a new task named as domain
adaptive cross-modal retrieval, where training (source) data and testing (target) data are from different
domains. The task is challenging, as there are not only the semantic gap and modality gap between visual
and textual items, but also domain gap between source and target domains. Therefore, we propose a
Multi-level Alignment Network (MAN) that has two mapping modules to project visual and textual modal-
ities in a common space respectively, and three alignments are used to learn more discriminative features
in the space. A semantic alignment is used to reduce the semantic gap, a cross-modality alignment and a
cross-domain alignment are employed to alleviate the modality gap and domain gap. Extensive experi-
ments in the context of domain-adaptive image-text retrieval and video-text retrieval demonstrate that
our proposed model, MAN, consistently outperforms multiple baselines, showing a superior generaliza-
tion ability for target data. Moreover, MAN establishes a new state-of-the-art for the large-scale text-to-
video retrieval on TRECVID 2017, 2018 Ad-hoc Video Search benchmark.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

As data from different modalities, such as text, images, and
videos, are growing at an unprecedented rate, cross-modal retrie-
val [1–6] has attracted increasing attention in the multimedia
community [7–9]. The existing efforts in this research direction
mainly focus on the tasks of image-text retrieval [10–12] and
video-text retrieval [13–15]. Take the image-text retrieval as an
example, the goal of this task is to retrieve images which are
semantically related to a given text query, or retrieve text describ-
ing the content of a given image query.

Recently, with the development of deep learning technologies,
great progress has been achieved for cross-modal retrieval
[10–18]. The key of cross-modal retrieval is to learn a common
space where the similarity between different modalities can be
directly computed. Based on the recurrent neural network and
convolutional neural network, Dong et al. [13] first propose a
multi-level video encoding and multi-level text encoding to obtain
strong video and sentence representations, then project videos and
text into a common space by two linear transformations. In [17],
Chen et al. utilize a graph convolutional network to model the con-
nection between words, and generate hierarchical textual embed-
dings via attention-based graph reasoning. Instead of using one
specific sentence encoder, Li et al. [18] propose to utilize diverse
sentence encoders and learn multiple encoder-specific common
spaces to measure cross-modal similarity. More recently, Gabeur
et al. [16] introduce a multi-modal Transformer with four stacked
Transformer layers [19] to jointly encode the different modalities,
such as motion, audio and appearance, in videos, which allows
each of them to attend to the others. Besides the deep learning
technologies, this success is also attributed to the availability of
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large-scale human-annotated cross-modal datasets such as the
MS-COCO [20] and MSR-VTT [21] datasets. For instance, MSR-
VTT totally has 10,000 videos, and each video is annotated with
20 crowd-sourced natural language sentences that briefly describe
the main objects and their relations, scenes and activities in the
video. To annotate such a kind of video-text dataset, one has to
watch the videos, listen to the audios, and carefully utilize natural
language sentences to describe the content of the watched videos.
Therefore, collecting large-scale annotated cross-modal datasets is
time-consuming and laborious.

In real application scenarios, if we would like to build a cross-
modal retrieval for a specific new domain (target domain), a
straightforward way is to collect a great number of labeled training
data which have the same data distribution as the unlabeled data
of the target domain, thus train a model on the collected data.
However, as mentioned before that collecting a large-scale anno-
tated cross-modal dataset is time-consuming and laborious, this
solution is to some extent suboptimal. Instead of collecting a
new dataset, another solution is to utilize off-the-shelf labeled
cross-modal data, but such data usually show different data distri-
bution with the target domain. As shown in Fig. 1, two fashion
images from different datasets show a clear difference. In this con-
text, most existing cross-modal retrieval models will likely experi-
ence a significant performance drop (as shown in Fig. 2), as they
make an assumption that training and testing data are drawn from
the same distribution. Based on this assumption, cross-modal
retrieval models [13,24,25] typically mainly focus on the differ-
ences between data of different modalities. For example, in order
to learn the common space, Dong et al. [24] employ a mean
Fig. 1. Sample images associated with the corresponding textual description from (a)
datasets.

Fig. 2. The performance significantly decrease when the training data and test data h
Fashion200K dataset [22] and (b) video-text retrieval tested on VATEX [23].
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squared error based loss to reduce the distance of relevant cross-
modal data pairs in the common space. In [25], Faghri et al. use a
triplet ranking loss to make the distance between the relevant
cross-modal data pair larger than that between irrelevant ones.
As these methods do not consider the domain gap between the
source and target data, it hurts their generalization ability to the
new target domain. Therefore, how to use off-the-shelf labeled
datasets to build a cross-modal retrieval model for a new target
domain is still an open question. To promote this direction, we
introduce a task called domain adaptive cross-modal retrieval, where
given several labeled source datasets which have different data
distribution with the unlabeled target dataset, it asks to build a
cross-modal retrieval model which adapts to the target domain.

Focusing on visual and textual modalities, in this paper we pro-
pose a Multi-level Alignment Network (MAN) for the domain adap-
tive cross-modal retrieval task. MAN first maps visual and text
modalities into a common space by a visual encoding and a text
encoding, respectively, and three alignments are employed to alle-
viate the above gaps in the mapped common space: a semantic
alignment for reducing the semantic gap, a cross-modality align-
ment for alleviating the modality gap, and a cross-domain align-
ment is employed to reduce the domain gap. Specifically, for the
semantic alignment, we use a triplet ranking loss [25] to make
the semantically relevant data near and semantically irrelevant
data far away in the common space. For the domain gap, we utilize
a number of discriminators to distinguish features from different
domains while the mapping encoders confuse them by adversarial
learning, which pushes the distribution of source data to well align
with target data. For the modality gap, adversarial learning is sim-
Fashion200k and (b) DeepFashion Datasets, showing a clear difference across the

ave different distribution in the context of (a) image-text retrieval tested on the
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ilarly employed to align the distribution of data of different
modalities.

To sum up, this paper makes the following contributions:

� We introduce a domain adaptive cross-modal retrieval task,
which aims to utilize off-the-shelf labeled datasets to build a
cross-modal retrieval model that adapts to the target domain.
The task is a cross-domain and cross-modal related task, so it
is very challenging but valuable for practical applications.

� We propose a Multi-level Alignment Network (MAN), which
learns visual-semantic embeddings cross domains and modali-
ties by three alignment modules. Our model is orthogonal to
visual and textual encoder, allowing us to flexibly embrace
state-of-the-art visual and textual encoders.

� Extensive experiments in the context of domain adaptive video-
text and image-text retrievals verify the effectiveness of our
proposed MAN. Moreover, MAN establishes a new state-of-
the-art for the large-scale text-to-video retrieval on TRECVID
2017, 2018 Ad-hoc Video Search benchmark.

The rest of the paper is organized as follows. Section 2 reviews
the methods related to cross-modal retrieval and domain adapta-
tion. In Section 3, we first formally define the problem of domain
adaptive cross-modal retrieval, followed by the model structure
and model training description of our proposed Multi-level Align-
ment Network. The experimental results and analysis in the con-
text of video-text retrieval and image-text retrieval are provided
in Section 4. Finally, Section 5 concludes our work and gives our
future work.
2. Related work

2.1. Cross-modal retrieval

The existing efforts in cross-modal retrieval mainly focus on the
tasks of image-text retrieval [10–12,26] and video-text retrieval
[13–15,27,28,79]. Despite the different forms of these two retrieval
paradigms, they essentially share a similar methodology. The key
of these retrieval paradigms is to compute the cross-modal rele-
vance between two modalities. The common solution [25,14,12]
is to project the data of different modalities into a common space,
thus measure cross-modal relevance in the common space by a
standard distance metric, e.g., cosine distance.

In the context of image-text retrieval, Frome et al. [29] first pro-
pose a visual-semantic embedding model to map images and text
into a common space, which utilizes pre-trained visual and textual
models. In a follow-up work, Kiros et al. [30] extend the model by
encoding images with a convolutional neural network (CNN) and
encoding text with a Long Short-Term Memory (LSTM), which
can be trained in an end-to-end manner. Using the similar model
structure with [30], Faghri et al. [25] improve the training strategy
by hard negatives mining, and Zhang et al. [31] propose a cross-
modal projection matching loss and a cross-modal projection clas-
sification loss to learning more discriminative features. Consider-
ing videos are more complex than images, the majority of video-
text retrieval methods focus on video representation
[13,14,32,33]. For instance, Dong et al. [13] propose a dual encod-
ing network to encode videos and text into powerful dense repre-
sentations of their own. Based on [13], Wu et al. [34] propose a
unified dual-task learning framework to increase the interpretabil-
ity of the model. Antoine et al. [14] introduce gated embedding
units to encoding videos and texts and train the model with bidi-
rectional max-margin ranking loss. Recently, Liu et al. [32] propose
a collaborative gating to fuse multiple different features, such as
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visual, motion, audio features, to obtain a strong video
representation.

The above cross-modal retrieval methods are based on an
assumption that training and testing data are drawn from the same
distribution. However, in real application scenarios, it is not easy to
hold this assumption. The approaches mentioned above will likely
perform badly when the assumption does not hold. Different from
the above methods, our proposed model allows training and test-
ing data can be drawn from the different distributions. It is worth
noting that the most similar work to ours is [35] which also allows
training and testing data can be drawn from the different distribu-
tions. But this work [35] needs the labeled image-text pairs from
both source and target domains for training. By contrast, our pro-
posed method does not need the labeled training pairs of the target
domain while only utilizes the existing labeled source datasets,
which further reduces the cost of collecting training data.

2.2. Domain adaptation

Domain adaptation methods aim at addressing the domain shift
problems [36,37]. According to whether the labels are available of
target data, domain adaptation methods are typically categorized
into two groups: unsupervised domain adaptation [38,39] and
supervised domain adaptation [40,41]. For unsupervised domain
adaptation, labeled data in the target domain are unavailable dur-
ing training. By contrast, supervised domain adaptation has an
access to the labeled data of the target domain for training.
Although these two groups of methods have different settings, they
both try to reduce the gap between the source domain and the tar-
get domain. Most domain adaptation methods seek to reduce the
distribution discrepancy between source and target features, by
minimizing several distribution discrepancy measures such as
maximum mean discrepancy [42–44], correlation alignment func-
tion [45,46] or optimal transport [47]. For instance, Sun et al. align
two domains by reducing their mean and covariance difference of
feature distribution [45]. Additionally, some works [48,40,49] are
proposed to learn domain-invariant representations between the
source domain and target domain by adversarial learning. They
adopt a similar idea with Generative Adversarial Networks (GAN)
[50,51] by introducing domain discriminators into their architec-
tures. The domain discriminators are optimized to distinguish dif-
ferent domains, while the feature extractors are optimized in the
opposite direction. Through adversarial training, it becomes diffi-
cult for the domain discriminators to distinguish different
domains, resulting in that the domain gap is reduced.

Common domain adaptation methods typically train models on
a source dataset, while recently we notice an increasing use of
multiple source datasets as the training data [52–55]. Such meth-
ods are known as the multi-source domain adaption method. For
instance, Xu et al. [53] propose a deep cocktail network which
solves the multi-source domain adaptation problem by a k-way
domain discriminator and category classifier. Zhao et al. [54] try
to align the distribution between the sources and targets through
adversarial learning. Most recently, in [55], Peng et al. transfer
knowledge learned from multiple labeled source domains to an
unlabeled target domain by dynamically aligning moments of their
feature distributions.

In this paper, our introduced domain adaptive cross-modal
retrieval task is an unsupervised domain adaptation problem,
where no labeled video/image-text pairs of the target domain are
available. Besides, as the above methods are designed for classifica-
tion tasks, they cannot be utilized directly for domain adaptive
cross-modal retrieval task. Therefore, targeting domain adaptive
cross-modal retrieval, this paper proposes MAN which aligns the
feature distribution among domains and modalities
simultaneously.
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3. Material and method

In this section, we first formally define the problem of domain
adaptive cross-modal retrieval, followed by the model structure
and model training description of our proposed MAN. For the ease
of reference, main abbreviations used in this work is listed in
Table 1.
3.1. Domain adaptive cross-modal retrieval

In the task of domain adaptive cross-modal retrieval, we focus
on visual and textual data, specifically for images and text, or
videos and text. In this task, we are provided with k labeled source

datasets ðVs
j ;T

s
j Þ ¼ fðv s

ji; t
s
jiÞgmj

i¼1

n ok

j¼1
, where mj indicates the num-

ber of semantically relevant images-sentence/video-sentence pairs
ðvs

ji; t
s
jiÞ of the j-th source dataset. Additionally, we are also given an

unlabeled target dataset Vt ¼ fv t
igni¼1;T

t
i ¼ fttignj¼1Þ

n o
with a col-

lection of images/videos Vt and a collection of textual sentences
Tt . Note that the target images and sentences are unpaired, which
means the relevant annotation are not available for the target data-
set. Based on the above source datasets and the target dataset,
domain adaptive cross-modal retrieval asks to learn a cross-
modal retrieval model which can search relevant images/video
by textual query or search relevant sentence by image/video query
in the context of the target domain. Fig. 3 illustrates a toy example
to show difference between traditional cross-modal retrieval and
domain adaptive cross-modal retrieval.
Table 1
Main abbreviations used in this paper.

Abbreviation Description

MAN Multi-level Alignment Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
FC Fully Connected layer
BoW Bag-of-Words
MLP Multilayer Perceptron
ReLU Rectified Linear Unit
mAP Mean Average Precision
infAP Inferred Average Precision
Med r Median rank
SumR Sum of the recalls
AVS Ad-hoc Video Search

Fig. 3. A toy example showing the difference between traditional cross-modal retrieval a
to map data of different modalities into a common space where semantically relevant da
from different domains. (b) The goal of domain adaptive cross-modal retrieval is to learn
different domains. To achieve it, we propose MAN which reduces the semantic gap, the
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3.2. Network architecture

Fig. 4 illustrates the framework of our proposed multi-level
alignment network for domain adaptive cross-modal retrieval,
which consists of three components: a visual encoder to extract
features of visual items, a textual encoder to extract features of
sentences, and a common space learning module to align the
cross-modality and cross-domain representations in the learned
common space.

For image-text retrieval, given an image, we adopt a CNNmodel
pre-trained on ImageNet and utilize its output of the last pooling
layer as the image encoding feature; given a sentence, we employ
a bidirectional LSTM and further use a max pooling layer to aggre-
gate the hidden states of all time steps, and the output is regarded
as the sentence encoding feature. As images and sentences are of
different modalities, their encoding features are not directly com-
parable. Hence, a fully connected layer is further employed over
the encoding features to project them into a common space where
the image-text similarity can be directly computed by a standard
distance metric, e.g., cosine distance. For ease of reference, we
merge feature extraction and projection process into mapping
module /ð�Þ;wð�Þ for visual items and text, respectively. Note that
for both target and source data, we share the mapping modules
to map them into the common space. Such a design is expected
to transfer the knowledge learned in the source domain to the tar-
get domain. For video-text retrieval, we use a multi-level video
encoding and a multi-level sentence encoding derived from [13]
to encode and project videos and text into a common space,
respectively.

In this paper, we focus on the common space learning module,
and describe our proposed module in the following sections. It is
worth noting that our proposed method is orthogonal to the visual
and textual encoder, allowing us to flexibly embrace state-of-the-
art visual and textual encoders.

3.3. Multi-level alignment

For the domain adaptive cross-modal retrieval, besides the
well-known semantic gap and modality gap between visual and
text items in cross-modal retrieval, there is a domain gap between
different datasets, which makes the problem more challenging. In
this paper, we propose a multi-level alignment to increase the gen-
erality of mapped visual and textual features, which contains a
semantic alignment to reduce the semantic gap and a cross-
modality alignment to alleviate the modality gap, and a cross-
domain alignment to reduce the domain gap.
nd domain adaptive cross-modal retrieval. (a) Traditional cross-modal retrieval aims
ta are near and irrelevant ones are far away. But it does not consider the case of data
a common space not only for the data of different modalities, but also for the data of
modality gap and the domain gap by three alignments.



Fig. 4. Illustration of our proposedMulti-level Alignment Network (MAN) for domain adaptive cross-modal retrieval. MAN first projects visual and text modalities in a common
space by a visual mapping and a text mapping respectively, and three alignments are employed: a semantic alignment to reduce the semantic gap, a cross-modality alignment
to alleviate the modality gap, and a cross-domain alignment is employed to reduce the domain gap.
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Semantic Alignment. The basic requirement of mapped fea-
tures in the common space is semantically discriminative, which
makes the retrieval model able to find the semantically relevant
items to the given query. To this end, the popular way is to use a
triplet ranking loss which aims to enforce semantically relevant
(positive) visual-text pairs close while semantically irrelevant
(negative) ones far away in the common space. Following the good
practice of using a triplet ranking loss with the hardest negative
example mining[56,25,13], we employ this loss over k source data-
sets. Note that as the target dataset is unlabeled, we can not
employ the triplet ranking loss over the target dataset. Specifically,
given k source datasets, the triplet ranking loss is defined as:

Ltri ¼
Xk

j¼1

Xmj

i¼1

½maxð0;a� sð/ðvs
jiÞ;wðtsjiÞÞ þ sð/ðvs�

ji Þ;wðtsjiÞÞÞ

þmaxð0;a� sð/ðv s
jiÞ;wðtsjiÞÞ þ sð/ðv s

jiÞ;wðts�ji ÞÞÞ�;
ð1Þ

where a is the margin constant, ðvs
ji; t

s
jiÞ are i-th relevant visual-text

pairs from j-th source dataset, /ðv s
jiÞ and wðtsjiÞÞ are their corre-

sponding mapped feature vectors in the common space and sð�; �Þ
indicates the similarity metric function. We implement sð�; �Þ with
the cosine similarity as it normalizes feature vectors and is found
to be better than the dot product or Euclidean distance according
to our preliminary experiments. Moreover, vs�

ji and ts�ji respectively
denote the negative visual item and textual item for the positive
pair ðv s

ji; t
s
jiÞ. The two negatives are not randomly sampled, we

choose the most similar yet negative items in the current mini-
batch. Instead of applying a computationally expensive scheme that
samples negative samples in the whole instance space, we perform
sampling in the mini-batch for high efficiency.

Cross Domain Alignment. As the above semantic alignment
only considers the source datasets while ignores the target dataset,
the feature learned with only the semantic alignment may not
work well for the target domain. To alleviate it, we additionally
introduce a cross domain alignment which aims to make the
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learned feature domain-invariant. The goal of cross domain align-
ment is learning a representation indistinguishable between the
source domains and the target domain, thus make the model
learned on the labeled source domain work well for the target
domain.

Inspired by the training idea of GAN [50] which has been suc-
cessfully used for a number of feature alignment works
[48,57,11], we also use it to align the features between the source
and target domains. A GAN model is typically comprised of a gen-
erator G and a discriminator D, which is usually trained with a two-
player adversarial game with G and D where G tries to fool D while
D tries to make accurate predictions. In our model, we regard two
mapping modules, /ð�Þ and wð�Þ, described in Section 3.2 as the
generator which generates feature representations of source and
target data. Besides, we additionally introduce domain discrimina-
tors that predict whether the input feature is drawn from the
source or the target domain. Although we have k source datasets,
we perform the same process for every source dataset. Specifically,
for the j-th source dataset, we equip it with a domain discriminator
f vj for the visual modality and a domain discriminator f tj for the tex-
tual modality. The discriminators are implemented with binary
classifiers that take a mapped feature vector in the common space
and outputs a scalar indicating the probability of the input from
the source dataset. To train the discriminators, we use the cross-
entropy loss. For the j-th source dataset, the loss is the summation
of cross-entropy losses respectively for the visual and textual
modalities:

Lj
d ¼ �

Xmj

i¼1

log f vj ðvs
jiÞ �

Xn

i¼1

logð1� f vj ðv t
jiÞÞ �

Xmj

i¼1

log f tj ðtsjiÞ

�
Xn

i¼1

logð1� f tj ðttjiÞÞ; ð2Þ

Finally, given k source datasets, the whole loss of the cross
domain alignment is given by:
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Ld ¼
Xk

j¼1

Lj
d: ð3Þ

We wish the mapped feature from different domains are
aligned as much as possible, so that they cannot be distinguished
by domain classifiers. In other words, two mapping modules, /ð�Þ
and wð�Þ, try to maximize the loss of Eq. 3. By contrast, the domain
discriminators try to minimize the loss. Since the optimization
goals of mapping modules and discriminators are opposite, the
training process runs as a minimax game of the two concurrent
sub-processes:

h�D ¼ argmin
hD

Ld ; h�G ¼ argmax
hG

Ld; ð4Þ

where hD and hG denote all the trainable parameters of the domain
classifiers and the mapping modules, respectively. In practice, max-
imizing Ld directly is hard, so we insert a gradient reversal layer
[38] before the discriminators to reverse the gradient of hD. There-
fore, the minimax optimization can be performed simultaneously
by only minimizing Ld.

Note that we have also tried a ðkþ 1Þ-class classifier (each class
corresponds to a dataset) as the discriminator that predicts which
dataset the input feature comes from. But we found that their per-
formance slightly worse than multiple binary classifiers in our pre-
liminary experiments. We attribute it to that the multi-class
discriminator is expected not only to discriminate the target and
source datasets, but also to discriminate different source datasets,
which may increase the optimization difficulty of the learning
objective.

Cross Modality Alignment. Features of different modalities
usually have inconsistent distributions and representations. Previ-
ous methods [12,25,24] typically project data from different
modalities into a common space by modeling the consistency of
the corresponding video and text pairs, while do not take care of
the distribution consistency between different modalities. More-
over, although the triplet ranking loss to some extent reduces the
cross modality gap, it is only employed for the labeled source
domain. Therefore, the cross modality gap of the target domain still
exists. Therefore, similar to the cross domain alignment, we addi-
tionally introduce a cross modality alignment to learn modality-
invariant features. Specifically, we introduce two modality dis-
criminators, one is for the source domains gs and the other is for
the target domain gt . The cross-entropy loss is also employed to
train the modality discriminator. Formally, given k source datasets
and a target dataset, the loss of the cross modality alignment is
defined as:

Lm ¼ �
Xk

j¼1

Xmj

i¼1

log gsðv s
jiÞ þ logð1� gsðtsjiÞÞ

h i

�
Xn

i¼1

log gtðv t
i Þ þ logð1� gtðtti ÞÞ

� �
; ð5Þ

The optimization process is the same as Eq. 4, and a gradient
reversal layer is also employed.
3.4. Joint Training and Inference

The overall loss of our proposed model is the sum of the triplet
ranking loss (Ltri), the cross-domain adversarial loss (Ld), and the
cross-modality adversarial loss (Lm), that is:

L ¼ Ltri þ cLd þ �Lm; ð6Þ

where c and � are the trade-off coefficients. Our proposed MAN can
be trained in an end-to-end manner by minimizing the overall loss
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of L. Note that gradient reversal layers are used in the adversarial
losses.

After the model being trained, we can use two mapping mod-
ules, /ð�Þ and wð�Þ, with the trained parameters to conduct cross-
modal retrieval for the target domain. Specifically, given a visual
item v t and a sentence tt from the target domain, we use cosine
similarity over their corresponding mapped feature to measure
their similarity, that is:

sðv t; ttÞ ¼ /ðv tÞ � wðttÞ
/ðv tÞk k � wðttÞ�� �� : ð7Þ

For text-to-image retrieval, given a sentence query, we sort all
the candidate images in descending order in terms of their cosine
similarity with the given sentence query. For image-to-text retrie-
val, given an image query, we sort all the candidate sentences in a
similar way. For text-to-video retrieval and video-to-text retrieval,
similar process are performed based on the two learned mapping
modules for videos and text.
4. Experiments

In order to verify the effectiveness of our proposed MAN for
domain-adaptive cross-model retrieval, we evaluate it in the con-
text of video-text retrieval and image-text retrieval.

4.1. Experiments on Domain Adaptive Video-text Retrieval

4.1.1. Experimental Setup
Datasets. As there are no existing domain adaptive video-text

retrieval benchmarks, we build a retrieval benchmark based on
three common video-text retrieval datasets: VATEX, TGIF, and
MSR-VTT. VATEX and TGIF are used as the source datasets, and
MSR-VTT is regarded as the target dataset. An overview of the
three datasets used in the domain adaptive video-text retrieval
experiments is given in Table 2.

VATEX [23]. VATEX is a new large-scale multilingual video
description dataset. It contains over 41,250 videos and 825,000
captions in both English and Chinese (10 English and 10 Chinese
captions for each video). We have successfully downloaded 5,464
videos, and we utilize all these videos with the corresponding Eng-
lish captions as our source dataset.

TGIF [58]. The Tumblr GIF (TGIF) dataset contains 100K ani-
mated GIFs collected from Tumblr and 120 K sentences describing
the visual content of the animated GIFs. It is used as another source
dataset.

MSR-VTT [21]. The MSR-VTT dataset, originally developed for
video captioning, consists of 10K web video clips and 200K natural
sentences describing the visual content of the clips. The average
number of sentences per clip is 20. We use the official data parti-
tion, i.e., 6,513 clips for training, 497 clips for validation, and the
remaining 2,990 clips for testing.

Here, we consider data of different datasets being from different
domains, as a specific dataset is typically collected in a distinct
manner. For the above three datasets, the sources of videos are dif-
ferent: videos in VATEX and MSR-VTT are collected from YouTube
while videos in TGIF are derived from Tumblr. It usually causes
variances in video frame rate, compression rate or visual quality,
etc. Besides, the length of videos in VATEX is much longer than that
of TGIF and MSR-VTT.

Evaluation Metrics. Following previous works [15,13] for
video-text retrieval, we report rank-based performance metrics,
namely R@K (K ¼ 1;5;10) and Median rank (Med r). R@K is the
percentage of test queries for which at least one relevant item is
found among the top-K retrieved results. Med r is the median rank
of the first relevant item in the search results. Higher R@K , mAP,



Table 2
Three datasets used in the domain adaptive video-text retrieval experiments.

Dataset Domain #Videos #Sentences

VATEX Source 5,464 54,640
TGIF Source 100 K 120 K
MSR-VTT Target 10 K 200 K
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and lower Med r mean better performance. For overall comparison,
we report the sum of all recalls (SumR).

Implementations. Before proceeding to the experiments, we
first detail our implementations. Our implementation is modified
based on [13]. For text preprocessing, we first convert all words
to the lowercase and then replace words that occurring less than
five times in the training set with a special token. Each word in
the sentence is then initialized to a dense vector using a word2vec
[59] model provided by [24], which trained word2vec on English
tags of 30 million Flickr images. For videos, we sample video
frames uniformly with a pre-specified interval of 0.5 s, and extract
its feature by pre-trained ResNext-101 provided by [56]. For ease
of reference, we name the feature as ResNext-101. For the text
and video encoding, we adopt multi-level text encoding and video
encoding [13] as its state-of-the-art performance for video-text
related tasks. The dimensionality of the common space is set to
2,048. For all the discriminators, we utilize a three-layer MLP with
a structure of 2048–2048-2, and a ReLU is used for hidden layer
activation and a Softmax is used for the output layer.

During training, we use Adam [60] with an initial learning rate
of 0.0001. The learning rate decays every epoch by a multiplier of
0.99. We set the max epochs as 50 and mini-batch size as 128, and
the margin a of triplet ranking loss as 0.2. For trade-off coefficients,
we set c ¼ � ¼ 0:01. Following previous work [24], we take an
adjustment schedule that once the validation loss does not
decrease in three consecutive epochs, we divide the learning rate
by 2. Early stop occurs if the validation performance does not
improve in ten consecutive epochs.
4.1.2. Performance comparison
As there are no existing works targeting the domain adaptive

video-text retrieval, we compare our proposed method with the
general cross-modal retrieval methods. We select the following
five methods, considering their source codes publicly available:

� VSE++ [25]: A state-of-the-art text-image retrieval model,
which is commonly used as the strong baseline model for
text-video retrieval. We replace its image-side branch with a
mean pooling on frame-level features followed by a FC layer.

� MEE [61]: It learns multiple common spaces for similarity mea-
surement, and the weighted sum of similarities in the multiple
spaces is regarded as the final video-text similarity.

� Howto100m [14]: It projects videos and text into a common
space by a gated embedding module respectively, and a triplet
ranking loss is employed to train the model.

� W2VV++ [56]: It jointly utilizes BoW, word2vec, and GRU to
extract multi-granularity features of text, and also uses a triplet
ranking loss for model training.

� DualEncoding [13]: It utilizes a multi-level video encoding and
multi-level text encoding to encode video and sentence, and a
FC layer is respectively further employed to map twomodalities
into a common space. A triplet ranking loss is also used to train
the model.

For a direct comparison, we have re-trained the above five
methods with their open-sourced codes, and using the same
ResNext-101 feature. As the above methods ignore the domain
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gap, we simply combine all the source datasets we used as the
training data.

Learning with multiple sources. Table 3 summarizes the per-
formance of different models learning with multiple sources. Our
proposed MAN consistently outperforms five cross-modal retrieval
models. Note that the compared five models ignore the domain gap
between the source domain and target domain, while our model
jointly considers the semantic gap, domain gap, and modality
gap by the multi-level alignment. The result verifies the effective-
ness of our multi-level alignment for domain adaptive video-text
retrieval. Additionally, DualEncoding can be regarded as a
degraded version of our model without the cross-domain align-
ment and cross-modality alignment. The better performance of
our model than DualEncoding shows the importance of these
two alignments.

Fig. 5 shows some text-to-Video retrieval examples obtained by
our proposed MAN and the baseline method DualEncoding, where
the baseline method only uses a triplet ranking loss for training
and ignores the domain gap. Our proposed MAN gives better per-
formance. For example, for the query Q1 of ‘‘a person made a paper
plane”, the results returned by our model are all about making a
paper plane. But, some videos returned by the baseline are about
”a real plane”. The results further show the effectiveness of MAN
for domain adaptive video-text retrieval.

Learning with a single source. Although our proposed MAN is
designed for learning with multiple sources, it is also able to learn
with a single source dataset. Table 4 shows the performance com-
parison with the other five methods using TGIF or VATEX as the
source dataset. Our MAN again performs the best. The result also
verifies the effectiveness of MAN for domain adaptive video-text
retrieval with a single source dataset.
4.1.3. Ablation studies
In order to investigate the contribution of each component in

our proposed method, we perform ablation studies in the context
of video-text retrieval. Table 5 summarizes the results. The perfor-
mance of the degraded variants is clearly worse than our full MAN,
showing the importance of each component. To be specific, remov-
ing any particular loss degrades the performance, and the variants
without the triplet ranking loss Ltri performs the worst. As Ltri is
employed for semantic alignment, the result shows that the
semantic alignment is essential for domain adaptive video-text
retrieval. Additionally, we also observe that the variant without
both Lm and Ld losses performs worse than that removing one
of them in terms of SumR. The results not only show the impor-
tance of these two losses, but also verify their complementarity
for the domain adaptive video-text retrieval task.

Additionally, we report another degraded variant MANs which
has the same model structure with MAN, while only roughly cre-
ates an aggregated source dataset with the two source datasets.
Its worse performance reveals the necessity of distinguishing mul-
tiple source datasets for video-text retrieval learned from multiple
sources.
4.2. Experiments on Ad-hoc Video Search

4.2.1. Experimental setup
In this experiment, we compare our MAN with state-of-the-art

methods in TRECVID Ad-hoc Video Search (AVS) task that is the
closest task to our evaluation setting. Given an ad hoc query, the
task aims to return a list of 1,000 shots from the test collection
ranked according to their relevance with the given query. As TREC-
VID does not specify training data, in which we need to train a gen-
eralized model using other existing datasets and transfer learned
knowledge from the existing datasets to the AVS task.



Table 3
Performance comparison on domain adaptive video-text retrieval with multiple source datasets. Source: TGIF + VATEX, Target: MSR-VTT. Larger R@{1,5,10} and smaller Med r
indicate better performance. Our proposed method MAN performs the best.

Text-to-Video Retrieval Video-to-Text Retrieval SumR

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

VSE++ [25] 7.9 20.0 27.6 54.0 16.3 33.2 41.6 18.0 146.6
Howto100m [14] 8.3 20.4 28.1 51.0 15.5 32.9 42.4 17.0 147.6
MEE [61] 8.8 22.2 30.6 41.0 16.3 34.5 44.3 15.0 156.7
W2VV++ [56] 9.3 23.4 31.2 37.0 16.0 34.8 44.9 15.0 159.6
DualEncoding [13] 9.3 23.1 31.5 38.0 16.5 35.2 45.4 14.0 161.0
MAN (this work) 10.1 23.8 32.8 35.0 18.0 36.9 46.6 13.0 168.2

Fig. 5. Text-to-Video retrieval examples obtained by our proposed MAN and the baseline method DualEncoding. These two models are trained on TGIF + VATEX and tested on
MSR-VTT. Red � indicates videos are not semantically with the input query. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Datasets. IACC.3 is the official test set for the TRECVID AVS task
2016–2018 [62]. The set contains 4,593 Internet archive videos
(600 h) with Creative Commons licenses in MPEG-4/H.264 format.
Video duration ranges from 6.5 min to 9.5 min, with a mean dura-
tion of approximately 7.8 min. Automated shot boundary detection
has been performed by the task organizers, resulting in 335,944
video clips in total. Per year TRECVID specifies 30 distinct queries
of varying complexity. Following the previous work [13], we utilize
the joint collection of MSR-VTT and TGIF as the training data.
Therefore, MSR-VTT and TGIF are regarded as the source datasets,
and IACC.3 is the target dataset. For video feature, we utilize 2048-
dim ResNext-101 provided by [56].
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Evaluation Metrics. We report inferred Average Precision
(infAP), the official performance metric used by the TRECVID AVS
task. The overall performance is measured by averaging infAP
scores over the queries.

Baselines. For method comparison, we include the top 3 entries
of each year, i.e., [63–65] for 2016, [66–68] for 2017 and [69–71]
for 2018. Besides we include publications that report performance
on the tasks, i.e., [72,73]. Among them, [69] fuses three W2VV++
variants with different settings. [70] uses two attention networks,
besides the classical concept-based representation. [71] is based
with VSE++. Notice that visual features and training data used by
these methods vary, meaning the conclusions drawn from this



Table 4
Performance comparison on domain adaptive video-text retrieval with a single source dataset. Target: MSR-VTT. Our proposed method MAN consistently performs better.

Text-to-Video Retrieval Video-to-Text Retrieval SumR

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Source: TGIF
MEE [61] 5.9 16.3 23.2 78.0 10.3 23.0 32.0 37.0 110.7
VSE++ [25] 6.6 17.0 23.8 76.0 12.3 28.0 36.6 25.0 124.2
Howto100m [14] 6.9 17.5 24.3 72.0 12.5 27.6 36.6 24.0 125.3
W2VV++ [56] 8.6 21.4 29.7 43.0 14.9 31.5 42.1 17.0 148.2
DualEncoding [13] 8.5 21.5 29.7 42.0 15.1 32.4 42.3 17.0 149.5
MAN (this work) 9.1 22.5 30.6 39.0 17.1 34.8 44.2 15.0 158.3

Source: VATEX
VSE++ [25] 4.2 12.4 18.3 115.0 7.4 19.0 26.0 50.0 87.3
Howto100m [14] 4.9 14.1 20.5 94.0 7.6 20.5 29.6 40.0 97.0
MEE [61] 5.0 14.9 21.6 77.0 7.5 20.2 28.1 46.0 97.3
W2VV++ [56] 5.4 15.2 22.3 75.0 9.7 23.7 31.4 36.0 107.7
DualEncoding [13] 5.6 15.9 22.9 74.0 9.7 23.6 31.6 36.0 109.3
MAN (this work) 5.9 16.8 23.5 65.0 10.4 24.7 32.3 31.0 113.6

Table 5
Ablation studies of our proposed MAN on domain adaptive video-text retrieval with multiple source datasets. Source: TGIF + VATEX, Target: MSR-VTT. Ltri is the triplet ranking
loss, Ld is the cross-domain adversarial loss, and Lm denotes the cross-modality adversarial loss. Our full model performs better than degraded ones.

Text-to-Video Retrieval Video-to-Text Retrieval SumR

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

MAN (Full model) 10.1 23.8 32.8 35.0 18.0 36.9 46.6 13.0 168.2
MAN w/o Ltri 0.0 0.2 0.4 1433.0 0.0 0.2 0.4 2690.0 1.2
MAN w/o Lm 9.7 23.6 32.1 36.0 17.3 36.1 46.4 13.0 165.2
MAN w/o Ld 9.7 23.7 32.2 36.0 17.9 36.7 46.6 13.0 166.8
MAN w/o Lm and Ld 9.3 23.1 31.5 38.0 16.5 35.2 45.4 14.0 161.0
MANs 9.3 23.3 32.0 37.0 17.1 35.9 45.5 14.0 163.1
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comparison are at a system level. So we also compare VSE++ [25],
W2VV [24], W2VV++ [56] and Dual encoding [13] using the same
training data and the same ResNeXt-101 feature.
4.2.2. Experimental results
Table 6 summarizes the performance of different methods on

the TRECVID 2016, 2017, and 2018 AVS tasks (also include the
top 3 entries of each year). Our proposed method MAN surpasses
the state-of-the-art in terms of the overall infAP. Particularly,
MAN achieves the infAP of 0.248 at 2017 AVS task, which exceeds
recent methods with a large margin. It is worth noting that VSE++
[25], W2VV++ [56] and Dual encoding [13] use the same training
data and video feature, but none of them consider the domain
gap between the source and target domains. The higher overall
performance of our proposed model shows its superior generaliza-
tion ability for AVS task.
4.3. Experiments on domain adaptive image-text retrieval

4.3.1. Experimental setup
Datasets. For domain adaptive image-text retrieval, we build an

evaluation benchmark based on CUHK-PEDES, Fashion200K, and
DeepFashion. CUHK-PEDES and Fashion200K are used as the
source datasets, and DeepFashion is regarded as the target dataset.
An overview of the three datasets used in the domain adaptive
image-text retrieval experiments is given in Table 7.

CUHK-PEDES [74]. The CUHK-PEDES dataset contains 40,206
pedestrian images, each of which is described by two textual
descriptions. There are 34,054 images and corresponding 68,108
sentence descriptions in the training set. The validation set and test
set consist of 3,078 and 3,074 images, respectively. Since we select
the dataset as source training data, only the image-text pairs in the
training set are used.
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Fashion200K [22]. The Fashion200K dataset contains over 200,
000 clothing images, and each image is described by one textual
description. The dataset is split into 172,049 images for training,
12,164 images for validation, and 25,331 images for testing. Simi-
larly, we only use the image-text pairs in the training set as the
source data.

DeepFashion [75]. The DeepFashion dataset is a large-scale
fashion-related benchmark for various tasks, such as fashion attri-
bute prediction, landmark detection. Here, we use the Fashion Syn-
thesis benchmark which was originally developed for the fashion
image generation task, while has also been used for image-text
retrieval recently [76]. The dataset totally has 78,979 fashion
images ranging from well-posed shop images to unconstrained
consumer photos. Each image is annotated with one sentence cap-
tion which describes the visual content of the clothes in the
images. These images are officially divided into 70,000 for training
and 8,979 for evaluation. As there is no validation set available, we
randomly sample 1,000 images from the test set as the validation
set, and another 1,000 images as our final test set.

Evaluation Metrics. We use the R@K (K ¼ 1;5;10) as the per-
formance metrics. For overall comparison, we also report the
sum of all recalls (SumR).

Implementations. For text encoding, we first convert all words
to the lowercase and then replace words that occurring less than
five times in the training set with a special token. We set the
hidden-state size of each LSTM of bidirectional LSTM model to be
512. For image encoding, we resize images to 224 � 448, and hor-
izontally flip them with a possibility of 0.5. We use MobileNet [77]
to extract deep features of images. The dimensionality of the com-
mon space is set to 512. For all discriminators in the cross-domain
and cross-modality alignments, we use the same structure in
video-text retrieval. During training, we use Adam [60] with an ini-
tial learning rate of 0.0002. The learning rate decays every epoch
by a multiplier of 0.95. We set the max epochs as 300, mini-



Table 6
Performance comparison with the state-of-the-art methods on the TRECVID 2016/ 2017/ 2018 AVS tasks.

TRECVID edition

2016 2017 2018 overall

Top-3 TRECVID finalists:
Rank 1 0.054 [63] 0.206 [66] 0.121 [69] –
Rank 2 0.051 [64] 0.159 [67] 0.087 [70] –
Rank 3 0.040 [65] 0.120 [68] 0.082 [71] –

Literature methods:
W2VV [24] 0.050 0.071 0.022 0.048
Markatopoulou et al. [73] 0.064 – – –
VideoStory [72] 0.087 0.150 – –
VSE++ [25] 0.123 0.154 0.074 0.117
W2VV++ [56] 0.137 0.168 0.088 0.131
DualEncoding [13] 0.159 0.208 0.116 0.161
MAN (this work) 0.145 0.248 0.126 0.173

Table 7
Three datasets used in the domain adaptive image-text retrieval experiments.

Dataset Domain #Images #Sentences

CUHK-PEDES Source 34,054 68,108
Fashion200k Source 209,544 209,544
DeepFashion Target 78,979 78,979
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batch size as 16, and margin in triplet ranking loss as 0.2. For trade-
off coefficients, we empirically set c ¼ 0:001; � ¼ 0:001. Early stop
occurs if the validation performance does not improve in ten con-
secutive epochs.

Baselines. Besides the baselines VSE++ and W2VV++ compared
in the video-text retrieval, we also compare two common image-
text retrieval models, i.e., CMPC + CMPM [31], VSA-AE-MMD [78].
CMPC + CMPM has two same mapping modules to project images
and text into a common space, but does not consider the domain
gap between the source and target domains. VSA-AE-MMD
employs a maximummean discrepancy to align the source and tar-
get domains, but its method only works with one source domain.
For CMPC + CMPM, we use the open-sourced code and re-train
with the same datasets. Since there is no public code of VSA-AE-
Table 8
Domain adaptive image-text retrieval learning with multiple sources. Source: Fashion200K

Text-to-Image Retrieval

R@1 R@5 R@10

CMPC + CMPM [31] 0.3 1.8 4.0
VSE++ [25] 2.8 9.6 15.4
W2VV++ [56] 3.1 11.7 18.5
MAN (this work) 2.9 10.1 16.8

Table 9
Domain adaptive image-text retrieval with a single source. Target: DeepFashion.

Text-to-Image Retrieval

R@1 R@5 R@10

Source: Fashion200K
VSE++ [25] 1.3 5.5 8.6
VSA-AE-MMD [78] 1.8 4.8 9.1
CMPC + CMPM [31] 1.2 4.0 7.4
W2VV++ [56] 1.4 3.7 7.0
MAN (this work) 2.0 8.3 12.7

Source: CUHK-PEDES
VSE++ [25] 2.2 10.4 16.6
VSA-AE-MMD [78] 3.1 11.2 15.4
CMPC + CMPM [31] 2.9 12.5 19.3
W2VV++ [56] 1.8 8.2 13.9
MAN (this work) 2.7 11.3 18.2
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MMD, we re-implement it by ourselves and use the same image
and text encoding.
4.3.2. Performance comparison
Table 8 summarizes the performance on the target dataset

Fashion200K, where models are trained on two source datasets
of Fashion200K and CUHK-PEDES. Our proposed MAN achieves
the best overall performance SumR of 71.1. Among all the com-
pared models, CMPC + CMPM performs the worst, whose two map-
ping structures for visual and textual modalities are the same as
our MAN. The result again verifies the effectiveness of our multi-
level alignment for domain adaptive cross-modal retrieval. For
text-to-image retrieval, W2VV++ is better than our model. W2VV
++ uses a strong multi-level text encoding strategy including
BoW, word2vec, and bidirectional GRU, while our MAN only uti-
lizes a bidirectional LSTM. We attribute the higher performance
of W2VV++ to its strong text encoding. Since this paper mainly
focuses on how to align the cross-domain and cross-modality rep-
resentations, we leave the exploration of strong visual and textual
encodings for future study. Table 9 shows the performance com-
parison of domain adaptive image-text retrieval with a single
+ CUHK-PEDES, Target: DeepFashion.

Image-to-Text Retrieval SumR

R@1 R@5 R@10

2.8 10.9 18.0 37.8
3.8 14.3 21.1 67.0
2.6 12.5 20.3 68.7
4.2 15.1 22.0 71.1

Image-to-Text Retrieval SumR

R@1 R@5 R@10

2.5 7.2 12.2 37.6
1.2 6.5 9.3 32.7
0.8 4.9 9.4 27.7
1.9 5.0 9.7 28.7
2.5 8.9 14.2 48.6

2.6 10.6 18.5 60.9
3.6 11.3 17.2 61.8
2.5 9.4 16.3 62.9
2.6 10.7 18.3 55.5
3.3 11.9 20.4 67.8
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source dataset. Again, MAN gives the best SumR score. The results
further show the effectiveness of our model for domain adaptive
image-text retrieval.
5. Conclusion

In this paper, we introduce a new task domain adaptive cross-
modal retrieval, where the training data and the test data have dif-
ferent distributions. Due to the semantic gap, the domain gap and
the modality gap exist in the task, this task is very challenging. Tar-
geting this task, we propose a Multi-level Alignment Network,
which learns well-aligned visual-semantic embeddings cross
domains and modalities by three alignment modules. Our model
is orthogonal to the visual and textual encoders, allowing us to
flexibly embrace state-of-the-art visual and textual encoder struc-
tures. Extensive experiments in the context of video-text retrieval
and image-text retrieval verify the effectiveness of our proposed
MAN. In the future, we will explore the visual and textual encoder
structures that are suitable for domain adaptive cross-modal
retrieval. While in this paper we demonstrate the domain adapta-
tion idea in the specific case of cross-modal retrieval, they can in
principle generalize to other retrieval based tasks, such as video-
to-video retrieval.
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