

Partially Relevant Video Retrieval

Jianfeng Dong¹, **Xianke Chen**¹, Minsong Zhang¹, Xun Yang², Shujie Chen¹, Xirong Li³, Xun Wang¹

¹ Zhejiang Gongshang University
 ² University of Science and Technology of China
 ³ Renmin University of China

Text-to-Video Retrieval (T2VR)

• Give a textual query, T2VR asks to retrieve videos that are semantically relevant to the given query from a gallery of videos.

Textual Query

Videos

2

Weakness of conventional T2VR methods

• Video-text pairs in training datasets are **fully relevant**:

Query: Two man talk to each other and drive the car.

• Video-text pairs in real-world applications are mostly **partially relevant**:

Query: House writes on a glass surface with a dry erase marker.

Partially Relevant Video Retrieval (PRVR)

• Give a textual query, PRVR aims to retrieval a video which contains a (short) moment relevant w.r.t the query from a large collection of untrimmed videos.

_ _ _ _ _ _ _ _ _ _ _

Query: Penny walks in the living room and sits down on the couch, holding her cup of coffee.

How is PRVR different?

• Single Video Moment Retrieval (SVMR)

The SVMR task is to retrieve **moments** semantically relevant to the given query from **a given single untrimmed video**.

Query: The man then grabs a stick and begins spinning around in a hole on the stand.

Zhang et al. Regularized Two-Branch Proposal Networks for Weakly-Supervised Moment Retrieval in Videos. ACM MM 2020.

How is PRVR different?

• Video Corpus Moment Retrieval (VCMR)

The VCMR task is to retrieve **moments** semantically relevant to the given query from a large collection of untrimmed videos.

Zhang et al. Video Corpus Moment Retrieval with Contrastive Learning. SIGIR 2021.

Related work

• We summarize the differences of the above-mentioned related tasks and PRVR task in two aspects.

	Labe T	ls neede Training	ed in g	Task in inference					
	Video	Clip	Moment	Retrieve target video in a collection of videos	Locate moment in a given single video				
T2VR				\checkmark					
SVMR	\checkmark		\checkmark		\checkmark				
VCMR	\checkmark		\checkmark	\checkmark	\checkmark				
PRVR	\checkmark			\checkmark					

Our Method

PRVR is more practical but challenging

• How to make the model accurately construct the **partial relevance** between text query and its corresponding untrimmed video, and **where the relevant moment is localized and how long it lasts** are both unknown.

We formulate the PRVR task as a MIL problem

- Multiple Instance Learning (MIL) is a classical framework for learning from weakly annotated data, and widely used for classification tasks.
- We formulate the PRVR task as a MIL problem. A video can simultaneously viewed as a bag of video clips and a bag of video frames.

Wang *et al.* A comparison of five multiple instance learning pooling functions for sound event detection with weak labeling. ICASSP 2019.

Sentence Representation

• We adopt the method by [Lei et al. ECCV 2020] to encode text query, considering its good performance on VCMR.

Lei et al. TVR: A large-scale dataset for video-subtitle moment retrieval. In ECCV 2020.

Clip-scale Video Representation

• We downsample the features into a fixed number of feature vectors and use an FC layer and a one-layer Transformer to encode it, then employ a multi-scale sliding window strategy to generate video clips vectors.

Clip construction Varied sliding window sizes $\{1, 2, ..., n_u\}$ Resultant feature sequences $\{\Phi_1, \Phi_2, ..., \Phi_{n_u}\}$ video clips vectors: $C = \{\Phi_1, \Phi_2, ..., \Phi_{n_u}\} = \{c_1, c_2, ..., c_{n_c}\}$

13

Frame-scale Video Representation

• We utilize an FC layer and a one-layer Transformer to obtain frame-scale video representation $F \in \mathbb{R}^{d \times n_v}$.

Multi-scale Similarity

• We devise a Key Clip Guided Attention to select the most important clip representation and aggregate frame features.

Clip-scale similarity:

$$S_c(v,q) = \max\{\cos(c_1,q), \cos(c_2,q), \dots, \cos(c_{n_c},q)\}$$

Aggregated {
$$K = W_k F, Z = W_v F$$

frame feature { $r = softmax(\tilde{c}^T K)Z^T$

Frame-scale similarity:

$$S_f(v,q) = cos(r,q)$$

.

Similarity Learning and Model Inference

• We jointly use the **triplet ranking loss** and **InfoNCE loss** to learn the clip-scale and frame-scale similarity between video and text query.

$$\begin{aligned} \text{Triplet ranking loss:} & \text{InfoNCE loss:} \\ \mathcal{L}^{trip} &= \frac{1}{n} \sum_{(q,v) \in \mathcal{B}} \left[\max(0, m + S(q^-, v) - S(q, v)) & \mathcal{L}^{nce} &= -\frac{1}{n} \sum_{(q,v) \in \mathcal{B}} \left[\log \left(\frac{S(q,v)}{S(q,v) + \sum_{q_i^- \in \mathcal{N}_q} S(q_i^-, v)} \right) \\ &+ \max(0, m + S(q, v^-) - S(q, v)) \right], & + \log \left(\frac{S(q,v)}{S(q,v) + \sum_{v_i^- \in \mathcal{N}_v} S(q, v_i^-)} \right) \right], \end{aligned}$$

• After the model has been trained, the similarity between a video and a sentence query is computed as the sum of their clip-level similarity and frame-level similarity.

$$S(v,s) = \alpha S_c(v,s) + (1-\alpha)S_f(v,s)$$

Experiments

Datasets and Evaluation Metrics

- We re-purpose three datasets commonly used for VCMR, i.e., TVR, Activitynet Captions, and Charades-STA, considering their natural language queries partially relevant with the corresponding videos.
- We utilize the rank-based metrics, namely R@K(K=1,5,10,100) to evaluate PRVR models. R@K is the fraction of queries that correctly retrieve desired items in the top K of the ranking list.

GitHubDatasets Download:https://github.com/HuiGuanLab/ms-sl/tree/main/dataset

Experiments

- R1: How does the proposed method perform compared with baseline methods?
- R2: How the effects of the different components in our method?
- R3: How much does our model improve the performance of VCMR methods?
- R4: How the complexity of the proposed method compared with baseline methods?

Performance comparison on TVR

Model	R@1	R@5	R@10	R100	SumR			
T2VR models:								
W2VV, TMM18 [10]	2.6	5.6	7.5	20.6	36.3			
HGR, CVPR20 [7]	1.7	4.9	8.3	35.2	50.1			
HTM, ICCV19 [42]	3.8	12.0	19.1	63.2	98.2			
CE, BMVC19 [37]	3.7	12.8	20.1	64.5	101.1			
W2VV++, MM19 [31]	5.0	14.7	21.7	61.8	103.2			
VSE++, BMVC19 [15]	7.5	19.9	27.7	66.0	121.1			
DE, CVPR19 [11]	7.6	20.1	28.1	67.6	123.4			
DE++, TPAMI21 [12]	8.8	21.9	30.2	67.4	128.3			
RIVRL, TCSVT22 [13]	9.4	23.4	32.2	70.6	135.6			
VCMR models w/o moment localization:								
XML, ECCV20 [29]	10.0	26.5	37.3	81.3	155.1			
ReLoCLNet, SIGIR21[68]	10.7	28.1	38.1	80.3	157.1			
Ours	13.5	32.1	43.4	83.4	172.3			

• Our proposed model consistently performs the best compared with conventional T2VR models and models developed for VCMR.

Performance comparison on TVR

• Current video retrieval baseline models better address queries of larger relevance to the corresponding video while our method is less sensitive to irrelevant content in videos.

Performance comparison on Activitynet Captions and Charades-STA

• On both two datasets, our model is still at the leading position.

Model	R@1	R@5	R@10	R100	SumR				
T2VR models:									
W2VV [10]	2.2	9.5	16.6	45.5	73.8				
HTM [42]	3.7	13.7	22.3	66.2	105.9				
HGR [7]	4.0	15.0	24.8	63.2	107.0				
RIVRL [13]	5.2	18.0	28.2	66.4	117.8				
VSE++ [15]	4.9	17.7	28.2	67.1	117.9				
DE++ [12]	5.3	18.4	29.2	68.0	121.0				
DE [11]	5.6	18.8	29.4	67.8	121.7				
W2VV++ [31]	5.4	18.7	29.7	68.8	122.6				
CE [37]	5.5	19.1	29.9	71.1	125.6				
VCMR models w/o moment localization:									
ReLoCLNet [68]	5.7	18.9	30.0	72.0	126.6				
XML [29]	5.3	19.4	30.6	73.1	128.4				
Ours	7.1	22.5	34.7	75.8	140.1				

On Activitynet Captions

Model	R@1	R@5	R@10	R100	SumR					
T2VR models:										
W2VV [10]	0.5	2.9	4.7	24.5	32.6					
VSE++ [15]	0.8	3.9	7.2	31.7	43.6					
W2VV++ [31]	0.9	3.5	6.6	34.3	45.3					
HGR [7]	1.2	3.8	7.3	33.4	45.7					
CE [37]	1.3	4.5	7.3	36.0	49.1					
DE [11]	1.5	5.7	9.5	36.9	53.7					
DE++ [12]	1.7	5.6	9.6	37.1	54.1					
RIVRL[13]	1.6	5.6	9.4	37.7	54.3					
HTM [42]	1.2	5.4	9.2	44.2	60.0					
VCMR models w/o	VCMR models w/o moment localization:									
ReLoCLNet [68]	1.2	5.4	10.0	45.6	62.3					
XML [29]	1.6	6.0	10.1	46.9	64.6					
Ours	1.8	7.1	11.8	47.7	68.4					

On Charades-STA

Experiments

- R1: How does the proposed method perform compared with baseline methods?
- R2: How the effects of the different components in our method?
- R3: How much does our model improve the performance of VCMR methods?
- R4: How the complexity of the proposed method compared with baseline methods?

Ablation Studies on TVR

• Removing each component from our method would result in relative performance degeneration, which shows the importance of each component.

Model	R@1	R@5	R@10	R100	SumR
Full setup	13.5	32.1	43.4	83.4	172.4
w/o frame-scale branch	12.3	30.5	41.5	82.3	166.6
w/o clip-scale branch	8.0	21.0	30.0	74.0	133.0
w/o key clip guide	12.2	30.6	41.0	82.4	166.3
w/o InfoNCE	11.3	29.1	40.1	81.3	161.8
w/o Triplet loss	11.2	29.2	40.4	81.9	162.6

Experiments

- R1: How does the proposed method perform compared with baseline methods?
- R2: How the effects of the different components in our method?
- R3: How much does our model improve the performance of VCMR methods?
- R3: How the complexity of the proposed method compared with baseline methods?

PRVR for VCMR

• We replace the first stage of two VCMR models, which brings performance improvement to both models.

26

Experiments

- R1: How does the proposed method perform compared with baseline methods?
- R2: How the effects of the different components in our method?
- R3: How much does our model improve the performance of VCMR methods?
- R4: How the complexity of the proposed method compared with baseline methods?

Comparison on Model Complexity

• In terms of FLOPs, our model is at the mid-level. In terms of memory consumption, our model requires more memory than the majority of compared models.

	W2VV	HGR	HTM	CE	W2VV++	VSE++	DE	DE++	RIVRL	XML	ReLoCLNet	Ours
FLOPs (G)	0.42	2.96	0.06	0.06	0.4	0.20	5.24	5.30	8.64	0.80	0.96	1.22
Memory (MiB)	1231	8555	1225	1435	1281	1299	5837	3515	4809	2451	2673	5349

• Retrieval efficiency: 0.2 seconds for retrieval videos from 20,000 candidate untrimmed videos.

Conclusions

- In this work, we have proposed a novel T2VR subtask termed PRVR.
 Different from the conventional T2VR where a query is usually full relevant to the corresponding video, it is typically partially relevant in PRVR.
- Towards PRVR, we have **formulated it as a MIL problem**, and propose **MS-SL** which computes the similarity on both clip scale and frame scale in a **coarse-to-fine** manner.
- Extensive experiments on three datasets have verified the effectiveness of our method for PRVR, and have shown that it can also be used for improving VCMR.

Homepage of paper: <u>http://danieljf24.github.io/prvr/</u>

Partially Relevant Video Retrieval

Jianfeng Dong¹ Xianke Chen¹ Minsong Zhang¹ Xun Yang² Shujie Chen¹ Xirong Li^{*3} Xun Wang^{*1}

¹School of Computer and Information Engineering, Zhejiang Gongshang University
²School of Information Science and Technology, University of Science and Technology of China
³Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China

a397283164(*a*)163.com

E-mail: dongjf24@gmail.com

30