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Text-to-Video Retrieval ('T2VR)

* Give a textual query, T2VR asks to retrieve videos that are semantically

relevant to the given query from a gallery of videos.
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" Weakness of conventional T2VR methods

* Video-text pairs in training datasets are fully relevant:

Query: Two man talk to each other and drive the car.
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* Video-text pairs in real-world applications are mostly partially relevant:

Query: House writes on a glass surface with a dry erase marker.
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Partially Relevant Video Retrieval (PRVR)

* Give a textual query, PRVR aims to retrieval a video which contains a (short)

moment relevant w.r.t the query from a large collection of untrimmed videos.
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How 1s PRVR different?

* Single Video Moment Retrieval (SVMR)

The SVMR task 1s to retrieve moments semantically relevant to the given query

from a given single untrimmed video.

Query: The man then grabs a stick and begins spinning around in a hole on the stand.

[ Ground Truth 63.78s |« - e = - » 72.965

Zhang et al. Regularized Two-Branch Proposal Networks for Weakly-Supervised Moment Retrieval in Videos. ACM MM 2020.



How 1s PRVR different?

* Video Corpus Moment Retrieval (VCMR)

The VCMR task is to retrieve moments semantically relevant to the given query

from a large collection of untrimmed videos.
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Zhang et al. Video Corpus Moment Retrieval with Contrastive Learning, SIGIR 2021.
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Related work

e We summarize the differences of the above-mentioned related tasks and
PRVR task in two aspects.
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Our Method



PRVR 1s more practical but challenging

* How to make the model accurately construct the partial relevance
between text query and its corresponding untrimmed video, and where the
relevant moment is localized and how long it lasts are both unknown.
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We formulate the PRVR task as a MIL problem

* Multiple Instance Learning (MIL) 1s a
classical framework for learning from
weakly annotated data, and widely used
for classification tasks.

* We formulate the PRVR task as a MIL
problem. A video can simultaneously
viewed as a bag of video clips and a bag
of video frames.
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Wang ef al. A comparison of five multiple instance learning pooling functions for

sound event detection with weak labeling. ICASSP 2019.



Framework

Sentence

Representation
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Sentence Representation

* We adopt the method by [Lei et al. ECCV 2020] to encode text query,
considering its good performance on VCMR.
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Lei et al. TVR: A large-scale dataset for video-subtitle moment retrieval. In ECCV 2020.



Clip-scale Video Representation
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Frame-scale Video Representation

* We utilize an FC layer and a one-layer Transformer to obtain frame-scale video
representation F € R*Mw
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Multi-scale Similarity

* We devise a Key Clip Guided Attention to select the most important clip
representation and aggregate frame features.

?r

S.(v,q) = max{cos(cy,q), cos(cz, q), .., cos(cnc, q)}

Aggregated { K=W.F,Z =W,F
frame feature | 7 = softmax(éTK)ZT

Frame-scale similarity:

? __7 S¢(v,q) = cos(r,q)
Sy



Similarity Learning and Model Inference

* We jointly use the triplet ranking loss and InfoNCE loss to learn the
clip-scale and frame-scale similarity between video and text query.

Triplet ranking loss: InfoNCE loss:
: 1 . | 1 S(q,v)
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* After the model has been trained, the similarity between a video and a sentence
query is computed as the sum of their clip-level similarity and frame-level
similarity.

S(w,s) =aS.(v,s) + (1 — a)S¢(v,s)
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Experiments



Datasets and Evaluation Metrics

* We re-purpose three datasets commonly used for VCMR, ie., TVR,
Activitynet Captions, and Charades-STA, considering their natural
language queries partially relevant with the corresponding videos.

* We utilize the rank-based metrics, namely R@K(K=1,5,10,100) to evaluate
PRVR models. R@K is the fraction of queries that correctly retrieve
desired items in the top K of the ranking list.

Datasets Download:

¢) GitHub

htt

ps:/ /github.com/HuiGuanl.ab/ms-sl/tree/main/dataset
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https://github.com/HuiGuanLab/ms-sl/tree/main/dataset

Experiments

* R1: How does the proposed method perform compared with baseline
methods?

* R2: How the effects of the different components in our method?

* R3: How much does our model improve the performance of VCMR

methods?

* R4: How the complexity of the proposed method compared with

baseline methods?



Performance comparison on TVR

Model R@1 R@5 R@10 R100 SumR )
o
R Our proposed model consistently
W2VV, TMM18 [10] 26 56 75 206 36.3 performs the best compared with
HGR, CVPR20 [7] 1.7 4.9 83 352 50.1 .
HTM, ICCV19 [42] 38 120 191 632 98.2 conventional T2VR models and
CE, BMVC19 [37] 37  12.8 20.1 645 101.1
W2VV++, MM19 [31] 50  14.7 21.7 618 103.2 models developed for VCMR.
VSE++, BMVC19 [15] 75  19.9 27.7  66.0 121.1
DE, CVPR19 [11] 7.6 20.1 28.1  67.6 123.4
DE++, TPAMI21 [12] 8.8 219 30.2 674 128.3
RIVRL, TCSVT22 [13] 94 234 322 70.6 135.6
VCMR models w/o moment localization:
XML, ECCV20 [29] 10.0  26.5 373 813 155.1
ReLoCLNet, SIGIR21[68]  10.7  28.1 38.1  80.3 157.1

Ours 13.5 321 434 834 172.3




Performance comparison on TVR

* Current video retrieval baseline models better address queries of larger
relevance to the corresponding video while our method 1s less sensitive to

irrelevant content in videos.
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Performance comparison on Activitynet Captions and Charades-STA

* On both two datasets, our model is still at the leading position.

Model R@1 R@5 R@10 R100 SumR
T2VR models:

W2VV [10] 2.2 9.5 16.6 45.5 73.8
HTM [42] 3.7 13.7 22.3 66.2 105.9
HGR [7] 4.0 15.0 24.8 63.2 107.0
RIVRL [13] 5.2 18.0 28.2 66.4 117.8
VSE++ [15] 49 177 282 67.1 117.9
DE++ [12] 5.3 18.4 29.2 68.0 121.0
DE [11] 5.6 18.8 29.4 67.8 121.7
W2VV++ [31] 5.4 18.7 29.7 68.8 122.6
CE [37] 5.5 19.1 29.9 71.1 125.6
VCMR models w/o moment localization:

ReLoCLNet [68] 5.7 18.9 30.0 72.0 126.6
XML [29] 5.3 19.4 30.6 73.1 128.4
Ours 7.1 225 34.7 75.8 140.1

Model R@1 R@5 R@10 R100 SumR
T2VR models:

W2VV [10] 0.5 2.9 4.7 245 32.6
VSE++ [15] 0.8 39 72 317 43.6
W2VV++ [31] 0.9 3.5 6.6 34.3 45.3
HGR [7] 1.2 3.8 7.3 334 45.7
CE [37] 13 45 73 360 49.1
DE [11] 1.5 5.7 9.5 36.9 53.7
DE++ [12] 17 56 9.6  37.1 54.1
RIVRL[13] 1.6 5.6 0.4 37.7 54.3
HTM [42] 1.2 5.4 9.2 44.2 60.0
VCMR models w/o moment localization:

ReLoCLNet [68] 1.2 5.4 10.0 45.6 62.3
XML [29] 1.6 6.0 10.1 46.9 64.6
Ours 1.8 7.1 11.8  47.7 68.4

On Activitynet Captions

On Charades-STA

22



Experiments

* R1: How does the proposed method perform compared with baseline

methods?
* R2: How the effects of the different components in our method?

* R3: How much does our model improve the performance of VCMR

methods?

* R4: How the complexity of the proposed method compared with

baseline methods?
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Ablation Studies on TVR

* Removing each component from our method would result in relative

performance degeneration, which shows the importance of each component.

Model R@1 R@5 R@10 R100 SumR - ~O~ Multi-scale Similarity
180 1 — clip-scale Similarity
Full setup 13.5 32.1 43.4 83.4 172.4 1754 7= Frame-scale Similarity
w/o frame-scale branch 12.3 30.5 41.5 82.3 166.6 & 170 W
w/o clip-scale branch 8.0 210 30.0  74.0  133.0 E 1651 T67.3
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Experiments

* R3: How much does our model improve the performance of VCMR

methods?



PRVR tor VCMR

* We replace the first stage of two VCMR models, which brings performance

improvement to both models.
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Experiments

* R4: How the complexity of the proposed method compared with

baseline methods?



Comparison on Model Complexity

* In terms of FLLOPs, our model is at the mid-level. In terms of memory
consumption, our model requires more memory than the majority of

compared models.

w2vv. HGR HTM CE W2VV++ VSE++ DE DE++ RIVRL XML ReLoCLNet Ours

FLOPs (G) 0.42 296 006 0.06 0.4 0.20 5.24  5.30 8.64 0.80 0.96 1.22

Memory (MiB) 1231 8555 1225 1435 1281 1299 2837 3515 4809 2451 2673 2349

* Retrieval efficiency: 0.2 seconds for retrieval videos from 20,000

candidate untrimmed videos.



Conclusions

* In this work, we have proposed a novel T2VR subtask termed PRVR.
Ditferent from the conventional T2VR where a query is usually full relevant

to the corresponding video, it is typically partially relevant in PRVR.

* Towards PRVR, we have formulated it as a MIL problem, and propose
MS-SL which computes the similarity on both clip scale and frame scale in

a coarse-to-fine manner.

* Extensive experiments on three datasets have verified the etfectiveness of
our method for PRVR, and have shown that it can also be used for

improving VCMR.



Homepage of paper: http://danieljf24.github.io/prvr/
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